
Library Reference

Software Development Tool

Table of Contents

GRAPHICS FUNCTIONS...7

SOUND FUNCTIONS... 155

STANDARD C FUNCTIONS.. 200

MATHEMATICAL FUNCTIONS.. 255

OTHER FUNCTIONS... 286

INDEX.. 329

About Net Yaroze

What You Need to Know
In order to get started with Net Yaroze, you should have experience of C programming to a competent level

and a knowledge of a 2D graphic creation/editing tool. In addition, at least a basic grasp of a 3D modelling

package and a sound creation/editing tool would be help you get the best out of you Net Yaroze kit.

The Net Yaroze Manual Set
There are three books in the set of Net Yaroze manuals.

1. Start Up Guide

An introductory booklet explaining the contents and requirements of the Net Yaroze Starter Kit. It

also gives step by step instructions on setting up they Net Yaroze software on your PC and how to

run Net Yaroze software on the system.

2. User Guide

A reference manual providing details on making software for the Net Yaroze system.

3. Library Reference (this document)

A manual listing and describing the functions and structures in the Net Yaroze libraries.

Additional Reading
Please see the Additional Reading list at the end of the Start Up Guide.

1
Graphics Functions

RECT

Frame buffer rectangular area

Structure
typedef struct {

short x, y;

short w, h;

} RECT;

Members
x, y Coordinates for the top left-hand corner of the rectangular area

w, h Width and height of the rectangular area

Comments
RECT specifies the area of the frame buffer to be accessed. Negative values or values that

exceed the size of the frame buffer (1024x512) cannot be used.

DRAWENV

Drawing environment

Structure
typedef struct {

RECT clip;
short ofs[2];

RECT tw;

unsigned short tpage;

unsigned char dtd;

unsigned char dfe;

unsigned char isbg;

unsigned char r0, g0, b0;

DR_ENV dr_env;
} DRAWENV;

Members
clip Drawing area. Drawing is limited to the rectangular area specified by

clip. Drawing cannot be performed outside the clip area

ofs Offset. The values (ofs[0], ofs[1]) are added to all coordinate values to

give the address values used by all drawing commands when drawing

in the frame buffer

tw Texture window. Repeated use is made of the texture pattern

contained in the rectangular area within the texture page

defined by tw

tpage Texture page initial value

dtd Dither treatment flag

0: OFF

1: ON

dfe Flag for drawing to the display area

0: Drawing to the display area is blocked

1: Drawing to the display area is allowed

isbg Clear drawing area flag

0: OFF

1: ON

0: The drawing area is not cleared when the drawing

environment is set up

1: The entire clipped area is painted with the brightness

values (r0,g0,b0) when the drawing environment is set

up.

r0,g0,b0 Background colour. Only available when isbg = 1.

dr_env Reserved for this system

Comments
DRAWENV sets the basic parameters relating to drawing offset, drawing clip area, etc.

Notes
Within the drawing space, drawing can actually be carried out in the region (0, 0)-(1023,

511).

Offset values and address values to which the offset has been added are wrapped around

using (-1024, -1024)-(1023, 1023).

Values that can be specified for the texture window are limited to the combinations shown

in the following table.

Tw.w 0(=256) 16 32 64 128

tw.x 0 multiple of 16 multiple of 32 multiple of 64 multiple of 128

tw.h 0(=256) 16 32 64 128

tw.y 0 multiple of 16 multiple of 32 multiple of 64 multiple of 128

DISPENV

Display environment

Structure
typedef struct {

 RECT disp;

 RECT screen;

 unsigned char isinter;

 unsigned char isrgb24;

 unsigned char pad0, pad1;

} DISPENV;

Members
disp Display area within the frame buffer

The width of the area can be set to 256, 320, 360, 512 or 640

The height of the area can be set to 240 or 480

screen Display area on the output screen

The screen area is calculated on the basis of a standard monitor screen

in which the coordinates are (0, 0) for the top left corner and (256,

240) for the bottom right corner, regardless of the disp value

isinter Interlaced mode flag

0: Non-interlaced

1: Interlaced

isrgb24 24bit mode flag

0: 16bit mode

1: 24 bit mode

Comments
DISPENV specifies parameters for screen display mode, frame buffer display position,

etc.

VECTOR

32bit 3D vectors

Structure
typedef struct {

long vx, vy;

long vz, pad;

} VECTOR;

Members
vx, vy, vz Vector components

pad Padding

Comments
VECTOR defines the structure of 32 bit 3D vectors.

SVECTOR

16 bit 3D vectors

Structure
typedef struct {

short vx, vy;

short vz, pad;

} SVECTOR;

Members
vx, vy, vz Vector components

pad Padding

Comments
SVECTOR defines the structure of 16bit 3D vectors.

CVECTOR

8bit 3D vectors (colour vectors)

Structure
typedef struct {

 unsigned char r, g, b, cd;

} CVECTOR;

Members
r, g, b Vector components

cd Padding

Comments
CVECTOR defines the structure of 8 bit colour vectors.

MATRIX

3 x 3 matrices

Structure
typedef struct {

short m[3][3];

long t[3];

} MATRIX;

Members
m 3x3 matrix coefficient values

t Amount of translation

Comments
Each component is specified using the m[i][j] part of MATRIX.

The amount of translation after conversion is specified using the t[i] part of MATRIX.

GsOT

Ordering table headers

Structure
struct GsOT {

unsigned short length;

GsOT_TAG *org;

unsigned short offset;

unsigned short point;

GsOT_TAG *tag;

};

Members
length OT bit length

org Top address of the GsOT_TAG table

offset OT offset on the Z axis in the screen coordinate system

point OT representative value on the Z axis in the screen

coordinate system

tag Pointer to the current top GsOT_TAG

Comments
GsOT indicates the ordering table header.

This header holds the pointers, org and tag that point to the actual ordering table. org and

tag are both initialised using the GsClearOt() function.

tag points to the top of the ordering table.

The GsDrawOt() function draws the ordering table to which tag points.

The value of tag changes because the top is changed using the GsSortClear() or

GsSortOt() functions. org is therefore provided to continue to hold the top of the ordering

table.

The size of the ordering table is set by length. length can be set to any value between 1

and 14. When length is set to 1, org points to a 0~1 GsOT_TAG array, and when length is

set to 14, org points to a 0~16384 GsOT_TAG array.

The GsClearOt() function initialises an area of memory from org up to the size specified

by length. Accordingly, it is important to be aware that if the size of the GsOT_TAG array

pointed to by org is less than the size indicated by length, memory may be damaged.

point refers to the representative value of the ordering table when ordering tables are

sorted among themselves by means of the GsSortOt() function.

offset sets the ordering table offset on the Z axis. For example, if offset = 256 the top of

the ordering table will be at Z = 256. (*1)

Notes
The values of length and org must be set at the initialisation stage. The other members are

set using the GsClearOt() function.

*1 Not supported at present.

See also
GsClearOt(),GsDrawOt(),GsSortOt(),GsCutOt()

GsOT_TAG

Ordering table units

Structure
struct GsOT_TAG {

unsigned p : 24;

unsigned char num : 8;

};

Members
p OT ring pointer

num Word number packet

Comments
The ordering table array will be the array of this GsOT_TAG.

The ordering table is the “list structure” that points to successive addresses. In the case of

the 32bit address, the lower order 24bit can be displayed by p.

The GsOT_TAG array of the size set by the GsOT member length is secured when the

ordering table is placed in memory.

GsDOBJ2

For GsCOORDINATE2 3D object handler

Structure
struct GsDOBJ2 {

unsigned long attribute;

GsCOORDINATE2 *coord2;

unsigned long *tmd;

unsigned long id;

};

Members
attribute Object attribute (32bit)

coord2 Pointer to local coordinate system

tmd Pointer to modelling data

id Reserved for the system

Comments
3D models can be manipulated via the structure GsDOBJ2, which is used as the handler

for each 3D model. GsLinkObject4() is used to link GsDOBJ2 to the modelling data of the

TMD file.

Access to linked TMD data is possible via GsDOBJ2. GsSortObject4() is used to register

GsDOBJ2 in the ordering table.

coord2 is the pointer to the coordinate system inherent in the object.

The position, gradient and size of the object are reflected in the coordinate system pointed

by coord2 by setting the matrix.

tmd holds the top address of the modelling data stored in memory in TMD format. tmd is

calculated and set by GsLinkObject4().

attribute is 32bit, and various attributes are set here for the purpose of display.

Comments on each bit are as follows.

(a) Light source calculation ON/OFF switch (bit 6)

This bit is used when the light source calculation is removed.

Texture-mapped polygons are displayed in original texture colour when the light

source calculation is removed. Unmapped polygons are displayed in modelling data

colour as they are.

(b) Automatic division function switch (bit 9-11)

0: No automatic division

 1: 2x2 division

 2: 4x4 division

 3: 8x8 division

 4: 16x16 division

 5: 32x32 division

This bit specifies the division number of automatic division. Automatic division is the

function for automatically dividing one polygon at the time of execution. It is used for

decreasing texture distortion and preventing deficiency in neighbouring polygons.

However, division should be kept to a minimum in order to increase the number of

polygons in exponential function terms.

(c) Semi-transparency ON/OFF (bit30)

This puts semi-transparency ON/OFF.

The highest order bit (STP bit) of the texture colour field (texture pattern when direct

is set, CLUT colour field when indexed is set) must be used together with this bit in

order to set semi-transparency. Pixel unit semi-transparency/opacity can also be

controlled by using this STP bit.

(d) Display ON/OFF (bit31)

This puts display ON/OFF.

GsCOORDINATE2

Matrix type coordinate system

Structure
struct GsCOORDINATE2 {

unsigned long flg;

MATRIX coord;

MATRIX workm;

GsCOORD2PARM *param;

GsCOORDINATE2 *super;

};

Members
flg Flag as to whether or not coord has been rewritten

coord Matrix

workm The result from this coordinate system to the WORLD coordinate

system

param Pointer for using scale, rotation and transfer parameters

super Pointer to the parent coordinates

Comments
GsCOORDINATE2 holds parent coordinates and is defined according to the MATRIX

type coord.

When the matrix is multiplied by the GsGetLw() or GsGETLs() function in each node of

GsCOORDINATE2 from the WORLD coordinates, its result is held in workm.

However, it does not store the result in workm of the coordinate system that is directly

connected to the WORLD coordinate system.

At the time of GsGetLw() and GsGetLs() calculation, flg is referred to in order to avoid

calculation of nodes that have already been calculated. 1 is to set, 0 is to clear.

The programmer must take responsibility for clearing this flag if the content of coord is

changed. Otherwise, the GsGetLw()and GsGetLs() functions will be defective.

GsVIEW2

Viewpoint position (MATRIX type)

Structure
struct GsVIEW2 {

MATRIX view;

GsCOORDINATE2 *super

};

Members
view Matrix for conversion from parent coordinates to viewpoint

coordinates

super Pointer to the coordinate system that sets the viewpoint

Comments
GSVIEW2 sets the viewpoint coordinate system. It directly specifies the matrix for

converting from the parent coordinate system to the viewpoint coordinate system in view.

The setting function is GsSetView2().

GsRVIEW2

Viewpoint position (REFERENCE type)

Structure
struct GsRVIEW2 {

long vpx, vpy, vpz;

long vpx, vpy, vpz;

long rz;

GsCOORDINATE2 *super

};

Members
vpx, vpy, vpz Viewpoint coordinates

vrx, vry, vrz Reference point coordinates

rz Viewpoint twist

super Pointer to the coordinate system that sets the viewpoint

(GsCOORDINATE2 type)

Comments
GsVIEW2 holds the viewpoint information, and is set according to the GsSetRefView2()

function.

The coordinates of the viewpoint in the coordinate system displayed by super are set in

(vpx, vpy, vpz).

The coordinates of the reference point in the coordinate system displayed by super are set

in (vrx, vry, vrz).

rz is specified in fixed decimal point format with the gradient for the screen z axis when

the z axis is the vector from the viewpoint to the reference point, set so that 4096 is one

degree.

The coordinate systems of the viewpoint and reference point are set in super. For

example, a cockpit view can be easily created with this function by setting super in the

coordinate system of an aeroplane.

GsF_LIGHT

Parallel light source

Structure
struct GsF_LIGHT {

long vx, vy, vz;

unsigned char r, g, b;

};

Members
vx, vy, vz Light source direction vectors

r, g, b Light colours

Comments
GsF_LIGHT holds parallel light source information and is set in the system by the

GsSetFlatLight() function.

Up to three parallel light sources can be set at the same time.

Sets the direction vectors of the light source in (vx, vy, vz). The programmer does not have

to carry out standardisation as this is done by the GsSetFlatLight function.

The light shines strongest on normal vector polygons whose directions are opposite to

these vectors.

Sets the colours of the light source in (r,g,b) by 8bit.

GsFOGPARAM

Fog (depth queue) information

Structure
struct GsFOGPARAM {

short dqa;

long dqb;

unsigned char rfc, gfc, bfc;

};

Members
dqa Parameter of the degree of merging in relation to depth

dqb Parameter of the degree of merging in relation to depth

rfc, gfc, bfc Background colours

Comments
dqa and dqb are the attenuation coefficients to the background colour.

dqa and dqb can be shown according to the following formula.

 dqa = -df * 4096/64/h

 dqb = 1.25 * 4096 * 4096

df is where the attenuation coefficients become one. In other words it is the distance from

the viewpoint to the point where the background colour completely merges into the distant

view.

h is the distance from the viewpoint to the screen. In other words it indicates the

projection distance.

GsIMAGE

Image data configuration information

Structure
struct GsIMAGE {

short pmode;

short px, py;

unsigned short pw, ph;

unsigned long *pixel;

short cx, cy;

unsigned short cw, ch;

unsigned long *clut;

}

Members
pmode Pixel mode

0: 4bit CLUT

1: 8bit CLUT

2: 16bit DIRECT

3: 24bit DIRECT

4: Other mode mixtures

px, py Pixel data storage positions

pixel Pointer to pixel data

cx, cy CLUT data storage positions

cw, ch CLUT data width/ height

clut Pointer to CLUT data

Comments
GsImage is the structure for storing TIM format data information using the

GsGetTimInfo() function.

For file format, please refer to the Net Yaroze Members' Web site.

GsSPRITE

Sprite handler

Structure
struct GsSPRITE {

unsigned long attribute;

short x, y;

unsigned short w, h;

unsigned short tpage;

unsigned char u, v;

short cx, cy;

unsigned char r, g, b;

short mx, my;

short scalex, scaley;

long rotate;

};

Members
attribute 32bit length attribute (details are given below)

x, y Top left-hand point display positions

w, h Sprite width and height (not displayed when either w or h is 0)

tpage Sprite pattern texture page number

u, v Sprite pattern in-page offset

cx, cy Sprite CLUT address

r, g, b Brightness is set for each of r, g and b when they

are displayed (Original brightness when it is 128)

mx, my Rotation/ expansion central coordinates

scalex, scaley x and y direction scaling values

rotate Rotation angle (Units: 4096 = 1° (degree))

attribute bits

 6: Brightness regulation

0: ON

1: OFF

 24-25: Sprite pattern bit mode

0: 4bitCLUT

1: 8bitCLUT

2: 15bitDirect

 27: Rotation scaling function

0: ON

1: OFF

 28-29: Semi-transparency rate

0: 0.5 x Back + 0.5 x Forward

1: 1.0 x Back + 1.0 x Forward

2: 1.0 x Back - 1.0 x Forward

3: 1.0 x Back + 0.25 x Forward

 30: Semi-transparency ON /OFF

0: Semi-transparency OFF

1: Semi-transparency ON

 31: Displayed/ Not displayed

0: Display

1: No display

Comments
GsSPRITE is the structure that holds information for displaying sprites and prepares one

for each sprite displayed. The sprites can be operated via the parameters.

Either GsSortSprite() or GsSortFastSprite() may be used to register GsSPRITE in the

ordering table.

The on-screen display position is specified as (x, y). The points specified as (mx, my) in

the sprite pattern are the positions specified in the GsSortSprite() function, and the top

left-hand points of the sprites are the positions specified in the GsSortFastSprite()

function.

The width and length of the sprites are specified in pixel units as (w, h).

Texture page numbers, where there are sprite patterns, are specified as tpage (0~31).

The top left-hand points of the sprite patterns are specified with in-page offset as (u, v). A

range (0,0)~(255,255) can be specified.

The top positions of CLUT (Colour palette) are specified by the VRAM address as (cx,

cy) (only valid at the time of 4bit/8bit).

Brightness is specified for each of r, g and b as (r, g, b). Values from 0~255 can be

specified. The brightness of the original pattern is attained at 128 and double the

brightness at 255.

Rotation expansion central coordinates are given as (mx, my) as relative coordinates

whose origins are the top left-hand points of the sprites. For example, one half of the

width and length is specified if it is rotated at the centre of the sprite.

The scaling values are given for the x and y directions as (scalex, scaley). The unit is

4096 = 1.0 (original size). It can be set up to a maximum of eight times.

rotate sets rotation around the Z axis in fixed decimal point format with 4096 as 1 degree.

attribute is 32bit in which various attributes are set for display.

Comments on each bit are as follows.

(a) Brightness adjustment ON/OFF switch (bit 6)

This sets whether or not the sprite pattern pixel colours are to be drawn with

brightness adjusted according to the (r,g,b) values. When it is 1, brightness is not

adjusted and the (r,g,b) values are disregarded.

(b) Bit mode (bit 24-25)

In the sprite patterns there are 4bit and 8bit modes that use colour tables and a 15bit

mode that displays colour directly. This is specified here.

(c) Rotation scaling function (bit 27)

Switches the sprite expansion function ON/OFF. If it is switched off when sprite

rotation and expansion are not carried out, processing will be speeded up.

This bit is also disregarded in the case of the GsSortFastSprite() function, and the

expansion function is always turned OFF.

(d) Semi-transparency rate (bit 28-29)

Sets the method of pixel blending when semi-transparency is turned ON with bit 30.

Normal semi-transparent processing is performed when set to 0, pixel addition when

set to 1, pixel subtraction when set to 2, and 25% addition when set to 3.

(e) Semi-transparency ON/OFF (bit 30)

It turns semi-transparency ON/OFF.

The highest order bit (STP bit) of the texture colour field (texture pattern when direct

is set, CLUT colour field when indexed is set) must be used together with this bit in

order to set semi-transparency.

Pixel unit semi-transparency/opacity can also be controlled by using this STP bit.

(f) Display ON/OFF (bit 31)

Turns display ON/OFF.

 GsBG

BG (background picture) handler

Structure
struct GsBG {

unsigned long attribute;

short x, y;

short w, h;

short scrollx, scrolly;

unsigned char r, g, b;

GsMAP *map;

short mx, my;

short scalex, scaley;

long rotate;

};

Members
attribute Attribute

x, y Display positions of the top left-hand points

w, h BG display size (pixel unit)

scrollx, scrolly x,y scroll value

r, g, b Brightness is set for each of r, g and b when they are

displayed (Original brightness when 128)

map Pointer to map data

mx, my Rotation/ expansion central coordinates

scalex, scaley x and y direction scaling values

rotate Rotation angle (Units: 4096 = 1° (degree))

Comments
BG (Background) is a function for drawing one large rectangle constructed by the GsMAP

data combining small rectangles defined by GsCELL data.

BG can be operated via the structure of this GsBG, which exists in each BG.

The on-screen display position is specified as (x, y).

The display size of BG is specified as (w, h). Units are pixels and do not depend on the

cell size or the size of map.

The content of the map is also displayed repeatedly if the display area is larger than the

size of the map. (Tiling function)

(scrollx, scrolly) are the display position offsets in the map and are specified in dot units.

Brightness is specified for each of r, g and b as (r, g, b). It becomes the original colour at

128 and double the brightness at 255.

map is the pointer to the GsMAP format map data to which the top address of the map

data is specified.

Rotation expansion central coordinates are given as (mx, my) as relative coordinates

whose origins are the top left-hand points of BG. For example, one half of the width and

length is specified if it is rotated at the centre BG.

The scaling values are given for the x and y directions as (scalex, scaley). The unit is

4096 = 1.0 (original size). It can be set up to a maximum of eight times.

The rotation angle around the z axis is specified as rotate (4096 = 1 degree).

Please refer to GsSprite regarding attribute.

GsMAP

BG composition MAP

Structure
struct GsMAP {

unsigned char cellw, cellh;

unsigned short ncellw, ncellh;

GsCELL *base;

unsigned short *index;

};

Members
cellw, cellh Cell size (taken as 256 in the case of 0)

ncellw, ncellh Size of BG (unit is cell)

base Pointer to the GsCELL structure array

index Pointer to the cell array information

Comments
GsMAP is map data (cell array information) for composing BG with GsCELL. The map

data controls the information by cell index array.

The size of one cell is specified in pixel units as (cellw, cellh). Note also that one BG is

formed from a cell of the same size.

The size of map held by BG is specified in cell units as (ncellw, ncellh).

The top address of the GsCell array is set as base.

The top address of the cell array information table is set as index. The cell array

information indicates the index value for the above array shown in base as ncellw x

ncellh. A NULL cell (transparent cell) is indicated if the index value is 0xffff.

GsCELL

BG configuration cell

Structure
struct GsCELL {

unsigned char u, v;

unsigned short cba;

unsigned short flag;

unsigned short tpage;

};

Members

u Offset from within the page (X direction)

v Offset from within the page (Y direction)

cba CLUT ID

flag Inversion information

tpage Texture page number

Comments
GsCELL is the structure holding information about the cell that composes BG and it is

secured in the memory as an array.

The position of the sprite pattern corresponding to its cell is specified as (u, v) by offset in

the page specified as tpage.

cba is the data that displays the position within the frame buffer of the CLUT

corresponding to its cell, as follows.

Bit Value

bit0~5 X position of CLUT/16

bit6~15 Y position of CLUT

flag holds information as to whether or not that cell displays the original texture pattern

inversely.

Bit Value

bit0 Vertical inversion (no inversion when set to 0, inversion
when set to 1)

bit1 Horizontal inversion (no inversion when set to 0,
inversion when set to 1)

bit2~15 Reserved

tpage is the page number displaying the position within the frame buffer of the sprite

pattern.

GsLINE

Straight line handler

Structure
struct GsLINE {

unsigned long attribute;

short x0, y0;

short x1, y1;

unsigned char r, g, b;

};

Members
attribute Attribute

28-29: Semi-transparency rate

0: 0.5 x Back + 0.5 x Forward

1: 1.0 x Back + 1.0 x Forward

2: 1.0 x Back - 1.0 x Forward

3: 1.0 x Back + 0.25 x Forward

30: Semi-transparency ON OFF

0: Semi-transparency OFF

1: Semi-transparency ON

31: Display ON OFF

0: Display

1: No display

x0, y0 Position of drawing start point

x1, y1 Position of drawing end point

r, g, b Drawing colour

Comments
GsLINE is the structure that holds information necessary for drawing straight lines. The

GsSortLine() function is used to register GsLINE in the ordering table.

attribute is 32bit, and various attributes are set here for the purpose of display.

(a) Semi-transparency rate (bit28-29)

 GsLINE sets the pixel blending method when semi-transparency is turned ON by

 bit30. Normal semi-transparency processing is performed when set to 0, pixel addition

 when set to 1, pixel subtraction when set to 2, and 25% addition when set to 3.

(b) Semi-transparency ON/OFF (bit30)

 Turns semi-transparency ON/OFF

(c) Display ON/OFF (bit31)

 Turns display ON/OFF

GsGLINE

Gradation straight line handler

Structure
struct GsGLINE {

unsigned long attribute;

short x0, y0;

short x1, y1;

unsigned char r0, g0, b0;

unsigned char r1, g1, b1;

};

Members
attribute Attribute

28-29: Semi-transparency rate

0: 0.5 x Back + 0.5 x Forward

1: .0 x Back + 1.0 x Forward

2: 1.0 x Back - 1.0 x Forward

3: 1.0 x Back + 0.25 x Forward

30: Semi-transparency ON OFF

0: Semi-transparency OFF

1: Semi-transparency ON

31: Display ON OFF

0: Display

1: No display

x0, y0 Position of drawing start point

x1, y1 Position of drawing end point

r0, g0, b0 Start point drawing colour

r1, g1, b1 End point drawing colour

Comments
GsGLINE is the structure that holds information necessary for drawing gradation straight

lines. It is the same as for GsLINE except that drawing colour specification can be

separately set at the start point and end point.

GsBOXF

Rectangle handler

Structure
struct GsBOXF {

unsigned long attribute;

short x, y;

unsigned short w, h;

unsigned char r, g, b;

};

Members
attribute Attribute

28-29: Semi-transparency rate

0: 0.5 x Back + 0.5 x Forward

1: 1.0 x Back + 1.0 x Forward

2: 1.0 x Back - 1.0 x Forward

3: 1.0 x Back + 0.25 x Forward

30: Semi-transparency ON OFF

0: Semi-transparency OFF

1: Semi-transparency ON

31: Display ON OFF

0: Display

1: No display

x, y Display position (top left-hand point)

x, y Size of rectangle (width, height)

r, g, b Drawing colour

Comments
GsBOXF is the structure that holds information necessary for rectangles painted by single

colours. The GsSortBoxFill() function is used to register GsBOXF in the ordering table.

ResetGraph

Initialises graphics system

Format
int ResetGraph (

int mode

)

Arguments
mode Set mode

0: All reset. The drawing environment and display

environment are initialised.

1: The current drawing is cancelled and the command queue

is flushed.

Comments
It resets the graphics system with the mode that is specified by mode.

Return Value
None

SetDispMask

Sets display mask

Format
void SetDispMask(

int mask

)

Arguments
mask 0: Display is not carried out in ‘Display’.

1: Display is carried out in ‘Display’.

Comments
It allows display to ‘Display’

Return Value
None

PutDrawEnv

Sets drawing environment

Format
DRAWENV *PutDrawEnv (

DRAWENV *env

)

Arguments
env Drawing environment

Comments
Sets the basic parameters relating to drawing, e.g. drawing offset and drawing clip area.

Return Value
Top address of env

Notes
The drawing environment specified by PutDrawEnv() is valid until PutDrawEnv() is

executed or GsSwapDispBuff() is called.

See Also
GsSwapDispBuff(), DRAWENV

PutDispEnv

Sets display environment

Format
DISPENV *PutDispEnv (

DISPENV *env

)

Arguments
env Display environment

Comments
PutDispEnv sets the display environment. The display environment is immediately

executed at the point in time when the function is called.

Return Value
Top address of env

Notes
The drawing environment specified by PutDispEnv() is valid until PutDispEnv() is

executed or GsSwapDispBuff() is called.

See Also
GsSwapDispBuff(), DISPENV

LoadImage

Transmits data to frame buffer

Format
int LoadImage (

RECT *recp,

u_long *p

)

Arguments
recp Transmission destination rectangular area

p Transmission source main memory address

Comments

LoadImage transmits data below the address p to the rectangular area of the frame buffer

specified by recp.

Return Value
Queue number

Notes
Actual completion of the transmission needs to be identified by DrawSync() because it is a
non-blocking function.
The transmission area is not affected by the drawing environment (clip and offset).
The transmission area needs to fit into the area in which drawing is possible (0,0) -
(1023,511).

StoreImage

Transmits data from frame buffer

Format
int StoreImage (

RECT *recp,

u_long *p

)

Arguments
recp Transmission source rectangular area

p Transmission destination main memory address

Comments

StoreImage transmits the rectangular area of the frame buffer specified by recp to below

the address p.

Return Value
Queue number

Notes
Actual completion of the transmission needs to be identified by DrawSync() because it is a
non-blocking function.
The transmission area is not affected by the drawing environment (clip and offset).
The transmission area needs to fit into the area in which drawing is possible (0,0) -
(1023,511).

MoveImage

Transmits data between frame buffer

Format
int MoveImage (

RECT *recp,

int x,

int y

)

Arguments
recp Transmission source rectangular area

x,y Transmission destination rectangular area top left-hand point

Comments

MoveImage transmits the rectangular area of the frame buffer specified by recp to a

rectangular area of the same size starting from x,y.

Return Value
Queue number

Notes
Actual completion of the transmission needs to be identified by DrawSync() because it is a

non-blocking function.

The transmission area is not affected by the drawing environment (clip and offset).

The transmission area needs to fit into the area in which drawing is possible (0,0) -

(1023,511) for both the transmission source and transmission destination.

The content of the transmission source is stored. Also, the function cannot be guaranteed

if the areas of transmission source and transmission destination are overlapping,

ClearImage

Frame buffer high speed painting

Format
int ClearImage (

RECT *recp,

u_char r,

u_char g,

u_char b

)

Arguments
recp Painting rectangular area

r, g, b Painting pixel value

Comments
ClearImage paints the rectangular area of the frame buffer specified by recp with the

(r,g,b) brightness value.

Return Value
Queue number

Notes
Actual completion of the transmission needs to be identified by DrawSync() because it is a

non-blocking function.

The transmission area is not affected by the drawing environment (clip and offset).

GetTPage

Calculates primitive tpage member value

Format
u_short GetTPage (

int tp,

int abr,

int x,

int y

)

Arguments
tp Texture mode

0: 4bitCLUT

1: 8bitCLUT

2: 16bitDirect

abr Semi-transparency rate

0: 0.5 x Back + 0.5 x Forward

1: 1.0 x Back + 1.0 x Forward

2: 1.0 x Back - 1.0 x Forward

3: 1.0 x Back + 0.25 x Forward

x, y Texture page address

Comments
GetTPage calculates the texture page ID and returns it.

Return Value
Texture page ID

Notes
The semi-transparency rate is also valid for polygons that do not carry out texture

mapping.

The texture page address is limited to multiples of 64 in the x direction and multiples of

256 in the y direction.

GetClut

Calculates primitive clut member value

Format
u_short GetClut (

int x,

int y

)

Arguments
x, y CLUT frame buffer address

Comments
GetClut calculates the texture CLUT ID and returns it.

Return Value
CLUT ID

Notes
The CLUT address is limited to multiples of 16 in the x direction.

DrawSync

Waits for completion of all drawing

Format
int DrawSync (

int mode

)

Arguments
mode 0: Waits for completion of all non-block functions registered in

the queue.

1: The current rank number of the queue is checked and

returned.

Comments
DrawSync waits for completion of the drawing.

Return Value
Actual queue rank number

VSync

Waits for vertical synchronisation

Format
int VSync(

int mode

)

Arguments
mode 0: Blocking until vertical synchronisation occurs.

1: The time elapsed from the point in time when VSync() was previously

called is returned in units of one horizontal synchronisation interval.

n: (n>1) Counting from the point in time when VSync() was previously

called and blocking up to n times the occurrence of vertical

synchronisation.

n: (n<0) Absolute time from program activation is returned in vertical

synchronisation interval units.

Comments
Vsync waits for vertical synchronisation.

Return Value
mode>=0 Time elapsed from point in time when VSync() was previously

called (horizontal return unit)

mode<0 Time elapsed from program activation (vertical return unit)

VSyncCallback

Sets vertical synchronisation callback function

Format
int VSyncCallback(

void (*func)()

)

Arguments
func Callback function

Comments
the function func is called when vertical return section commence.

Callback does not occur when 0 is specified in func.

Return Value
None

Notes
Subsequent drawing completion interruptions are masked within func. Therefore, func

needs to return as soon as possible after completion of the necessary processing.

FntLoad

Transmits font pattern

Format
void FntLoad(

int tx,

int ty

)

Arguments
tx, ty Top left coordinate of the area of frame buffer that arranges the

font patterns

Comments
FntLoad transmits to the frame buffer the font pattern used for debugging.

Return Value
None

Comments
FntLoad loads the basic font pattern (4bit texture 256x128) to the frame buffer, and

initialises all print streams.

Notes
FntLoad() must without fail be executed before FntOpen() and FntFlush().

The font area must not conflict with the frame buffer area used by the application.

FntOpen

Opens print stream

Format
int FntOpen(

int x,

int y,

int w,

int h,

int isbg,

int n

)

Arguments
x, y Display start positions

w, h Display area

isbg Background automatic clearance

 0: Background is cleared to (0,0,0) when displayed.

 1: Background is not cleared to (0,0,0) when displayed.

n Number of letters

Comments
FntOpen opens the stream used for printing on screen. Thereafter, the largest n character

string of letters can be printed in the rectangular area of the frame buffer (x,y)-(x+w, y+h)

using the FntPrint() function.

 If 1 is specified in isbg, the background is cleared when a character string is drawn.

Return Value
Print stream ID

Notes
Up to 8 streams can be opened at the same time.

Opened streams cannot be closed until the next FntLoad() is called.

FntPrint

Output to print stream

Format
int FntPrint(

int id,

format,

...

)

Arguments
id Print stream ID

format Print format

Comments
FntPrint sends the character string to the print stream by the printf() interface.

Return Value
Character string within the stream

Notes
The actual display of the character string occurs when FntFlush() is executed.

FntFlush

Draws print stream contents

Format
u_long *FntFlush(

int id

)

Arguments
id Print Stream ID

Comments
FntFlush draws the print stream in the frame buffer.

Return Value
Temporary OT top pointer used in drawing

Notes
After completion of drawing, the print stream contents are also flushed.

KanjiFntOpen

Opens print stream

Format
int KanjiFntOpen (

int x,

int y,

int w,

int h,

int dx,

int dy,

int cx,

int cy,

int isbg,

int n

)

Arguments
x, y Display start positions

w, h Display area

dx,dy Kanji font pattern frame buffer address

cx,cy Kanji clut frame buffer address

isbg Background automatic clearance

 0: Background is cleared to (0,0,0) when displayed.

 1: Background is not cleared to (0,0,0) when displayed.

n Number of letters

Comments
KanjiFntOpen opens the stream used for printing on screen. Thereafter, the largest n

character string can be printed in the rectangular area of the frame buffer (x,y)-(x+w, y+h)

using the KanjiFntPrint() function.

If 1 is specified in isbg, the background is cleared when a character string is drawn.

Return Value
Print stream ID

Notes
Up to 8 streams can be opened at the same time.

Opened streams cannot be closed until the next KanjiFntLoad() is called.

The Kanji font area must not conflict with the frame buffer area used by the application.

KanjiFntClose

Closes print stream

Format
int KanjiFntClose(void)

Arguments
None

Comments
This function closes all the streams currently open ans are used by KanjiFntPrint() and

initialize the state.

Return Value
None

Notes
Since KanjiFntClose() only initializes the internal state, this function operations even

when there is no stream.

KanjiFntPrint

Outputs to print stream

Format
int KanjiFntPrint(

int id,

format,

...

)

Arguments
id Print stream ID

format Print format

Comments
KanjiFntPrint sends the SHIFT-JIS full-width character string to the print stream by the

printf() interface.

Return Value
Character string within the stream

Notes
The Kanji code must be SHIFT-JIS.

Full-width and half-width characters can be mixed in the character string, but they are all

changed to full-width at the time of display. Half-width kana are not supported. The actual

display of the character string occurs when KanjiFntFlush() is executed.

KanjiFntFlush

Draws print stream contents

Format
u_long *KanjiFntFlush (

int id

)

Arguments
id Print Stream ID

Comments
FntFlush draws the print stream contents in the frame buffer.

Return Value
Temporary OT top pointer used in drawing

Notes
After completion of drawing, the print stream contents are also flushed.

Krom2Tim

Converts SHIFT-JIS character strings to 4 bit CLUT data

Format
int Krom2Tim(

u_char *sjis,

u_long *taddr,

int dx,

int dy,

int cx,

int cy,

u_int fg,

u_int bg

)

Arguments
sjis SHIFT-JIS Character String

taddr Data storage area

dx, dy px,y coordinates on pixel data VRAM

cx, cy x,y coordinates on clut data VRAM

fg, bg Character colour and bg colour

Comments
Krom2Tim converts the SHIFT-JIS character string to 4 bits clut TIM data and returns to

taddr.

Return Value
-1 is returned if an irregular code is transferred.

Notes
The Kanji code must be SHIFT-JIS. Full-width and half-width characters can be mixed in

the character string , but they are all changed to full-width at the time of display. Half-

width kana are not supported.

For the area specified by taddr, the size shown in the following formula must be secured

in advance.

128 x (character string specified by sjis) + 84(byte)

Krom2Tim2

Converts SHIFT-JIS character strings to 4 bit CLUT Tim data

Format
int Krom2Tim2(

u_char *sjis,

u_long *taddr,

int dx,

int dy,

int cdx,

int cdy,

u_int fg,

u_int bg

)

Arguments
sjis SHIFT-JIS Character String

taddr Starting address of the converted TIM data

dx, dy Pixel data x,y coordinates on VRAM

cx, cy Clut data x,y coordinates on VRAM

fg, bg Front and background colour

Comments
Krom2Tim2 converts the SHIFT-JIS character string to 4 bits clut TIM data and returns

the starting address in taddr. This is user defined character support version of

Krom2Tim.

Return Value
-1 is returned if an invalid code is transferred.

Notes
The Kanji code must be in SHIFT-JIS. Although both ZENKAKU (double byte) and
HANKAKU (single byte) can be mixed witha string, all of them will not be converted to
ZENKAKU. Please note thant HANKAKU KANA is not supported.

Prior to calling this function, the area specified by 'taddr' must be reserved with the size
derived from the equation below.

Num: number of characters specified by sjis.

If (num<16)
(32 * num + 16) * 4 (bytes)

else
(32 * 16* ((num-1/16 + 1) +16) * 4 (bytes)

MulMatrix0

Takes product of two matrices

Format
MATRIX* MulMatrix0 (

MATRIX *m0,

MATRIX *m1,

MATRIX *m2

)

Arguments
m0,m1 Input matrix

m2 Output matrix

Comments
MulMatrix0 takes the product of the two matrices m0 and m1. The value is stored in m2.

The argument format is as follows.

m0,m1,m2->m[i][j] : (1,3,12)

Return Value
m2

Notes
The rotation matrix is fragmented

ApplyMatrix

Multiplies vector by matrix

Format
VECTOR* ApplyMatrix (

MATRIX *m,

SVECTOR *v0,

VECTOR *v1

)

Arguments
m Input multiplication matrix

v0 Input short vector

v1 Output vector

Comments
ApplyMatrix multiplies from the right the short vector v0 by the matrix m and stores the

result in the vector v1.

The argument format is as follows.

m->m[i][j] : (1,3,12)

v0->vx,vy,vz :(1,15,0)

v1->vx,vy,vz :(1,31,0)

Return Value
v1

Notes
The rotation matrix is fragmented.

ApplyMatrixSV

Multiplies vector by matrix

Format
SVECTOR* ApplyMatrixSV (

MATRIX *m,

SVECTOR *v0,

SVECTOR *v1

)

Arguments
m Input multiplication matrix

v0 Input short vector

v1 Output short vector

Comments
ApplyMatrixSV multiplies from the right the short vector v0 by the matrix m and stores

the result in the short vector v1.

The argument format is as follows.

m->m[i][j] : (1,3,12)

v0->vx,vy,vz :(1,15,0)

v1->vx,vy,vz :(1,15,0)

Return Value
v1

Notes
The rotation matrix is fragmented.

ApplyMatrixLV

Multiplies vector by matrix

Format
VECTOR* ApplyMatrixLV (

MATRIX *m,

VECTOR *v0,

VECTOR *v1

)

Arguments
m Input multiplication matrix

v0 Input vector

v1 Output vector

Comments
ApplyMatrixSV multiplies from the right the short vector v0 by the matrix m and stores

the result in the short vector v1.

The argument format is as follows.

m->m[i][j] : (1,3,12)

v0->vx,vy,vz :(1,31,0)

v1->vx,vy,vz :(1,31,0)

Return Value
v1

Notes
The rotation matrix is fragmented

RotMatrix

Searches for rotation matrix from rotation angle

Format
MATRIX* RotMatrix (

MATRIX *m

SVECTOR *r

)

Arguments
m Output rotation matrix

r Input rotation angle

Comments
RotMatrix supplies to matrix m the rotation matrix according to the rotation angle (r-

>vx,r->vy,r->vz). The rotation angle supplies 4096 as 360°, and 4096 is given as 1.0 for

the matrix component.

The matrix is an expansion of the following product. Using the GTE coordinate

conversion function, the vectors are multiplied from the right, thus the matrix rotates

around the Z, Y and X axes in that order.

1 0 0
0 0 0
0 0 0

1 0 1
0 1 0

1 0 1

2 2 0
2 2 0
0 0 1

c s
s c

c s

s c

c s
s c−















 −

















−















* *

Angle value

c0=cos(r->vx), s0=sin(r->vx)

c1=cos(r->vy), s1=sin(r->vy)

c2=cos(r->vz), s2=sin(r->vz)

The argument format is as follows.

m->m[i][j] : (1,3,12)

r->vx,vy,vz :(1,3,12) (however 360° is 1.0)

Return Value
m

RotMatrixX

Searches for rotation matrix around the X Axis

Format
MATRIX* RotMatrixX (

long r,

MATRIX *m

)

Arguments
r Input rotation angle

m Input and output rotation matrix

Comments
RotMatrixX supplies to matrix m the matrix multiplied by the rotation matrix around the

X axis according to the rotation angle r. The rotation angle supplies 4096 as 360°, and

4096 is given as 1.0 for the matrix component.

The matrix is as follows.

1 0 0
0
0

c s
s c

m−
















*

∗ c=cos(r), s=sin(r)

The argument format is as follows.

m->m[i][j] : (1,3,12)

r:(1,3,12) (however 360° is 1.0)

Return Value
m

RotMatrixY

 Searches for rotation matrix around the Y Axis

Format
MATRIX* RotMatrixY (

long r,

MATRIX *m

)

Arguments
r Input rotation angle

m Input and output rotation matrix

Comments
RotMatrixY supplies to matrix m the matrix multiplied by the rotation matrix around the

Y axis according to the rotation angle r. The rotation angle supplies 4096 as 360°, and

4096 is given as 1.0 for the matrix component.

The matrix is as follows.

c s

s c
m

0
0 1 0

0

−















*

∗ c=cos(r), s=sin(r)

The argument format is as follows.

m->m[i][j] : (1,3,12)

r:(1,3,12) (however 360° is 1.0)

Return Value
m

RotMatrixZ

Searches for rotation matrix around the Z Axis

Format
MATRIX* RotMatrixZ (

long r,

MATRIX *m

)

Arguments
r Input rotation angle

m Input and output rotation matrix

Comments
RotMatrixZ supplies to matrix m the matrix multiplied by the rotation matrix around the

Z axis according to the rotation angle r. The rotation angle supplies 4096 as 360°, and

4096 is given as 1.0 for the matrix component.

The matrix is as follows.

c s
s c m

−















0
0

0 0 1
*

∗ c=cos(r), s=sin(r)

The argument format is as follows.

m->m[i][j] : (1,3,12)

r:(1,3,12) (however 360° is 1.0)

Return Value
m

TransMatrix

Supplies amount of translation

Format
MATRIX* TransMatrix (

MATRIX*m,

VECTOR*v

)

Arguments
m Output matrix

v Input shift vector

Comments
TransMatrix supplies to matrix m the amount of translation shown by v.

The argument format is as follows.

m->m[i][j] : (1,3,12)

m->t[i]: (1,31,0)

v->vx,vy,vz : (1,31,0)

Return Value
m

ScaleMatrix

Supplies scaling factor

Format
MATRIX* ScaleMatrix (

MATRIX*m,

VECTOR*v

)

Arguments
m Output matrix

v Input scale vector

Comments
ScaleMatrix supplies to matrix m the scaling factor shown by v. It is a fixed decimal point

number with 4096 as 1.0 for the v component.

If m =

a a a
a a a
a a a

00 01 02
10 11 12
20 21 22

















,v =[]sx sy sz

then m=

a sx a sy a sz
a sx a sy a sz
a sx a sy a sz

00 01 02
10 11 12
20 21 22

* * *
* * *
* * *

















The argument format is as follows.

m->m[i][j] : (1,3,12)

v->vx,vy,vz : (1,19,12)

Return Value
m

ScaleMatrixL

Supplies scaling factor

Format
MATRIX* ScaleMatrixL (

MATRIX*m,

VECTOR*v

)

Arguments
m Output matrix

v Input scale vector

Comments
ScaleMatrixL supplies to matrix m the scaling factor shown by v. It is a fixed decimal

point number with 4096 as 1.0 for the v component.

If m =

a a a
a a a
a a a

00 01 02
10 11 12
20 21 22

















,v =[]sx sy sz

then m=

a sx a sy a sz
a sx a sy a sz
a sx a sy a sz

00 01 02
10 11 12
20 21 22

* * *
* * *
* * *

















The argument format is as follows.

m->m[i][j] : (1,3,12)

v->vx,vy,vz : (1,19,12)

Return Value
m

TransposeMatrix

Supplies rotation value matrix

Format
MATRIX* TransposeMatrix (

MATRIX*m0•C

MATRIX*m1

)

Arguments
m0 Input matrix

m1 Output matrix

Comments
TransposeMatrix supplies to m1 the rotation value matrix of matrix m0.

The argument format is as follows.

m0->m[i][j] : (1,3,12)

m1->m[i][j] : (1,3,12)

Return Value
m1

CompMatrix

Carries out coordinate conversion synthesis

Format
MATRIX*CompMatrix (

MATRIX*m0,

MATRIX*m1,

MATRIX*m2

)

Arguments
m0 Input matrix

m1 Input matrix

m2 Output matrix

Comments
CompMatrix carries out synthesis of coordinate conversion matrices including translation.

[m2->m] = [m0->m] * [m1->m]

(m2->t) = [m0->m] * (m1->t) + (m0->t)

However the value of the m1->t component must be within the range of −



215 215, .

The argument format is as follows.

m0->m[i][j] : (1,3,12)

m0->t[i]: (1,31,0)

m1->m[i][j] : (1,3,12)

m1->t[i]: (1,15,0)

m2->m[i][j] : (1,3,12)

m2->t[i]: (1,31,0)

Return Value
m2

Notes
The rotation matrix is fragmented.

PushMatrix

Evacuates rotation matrix to stack

Format
void PushMatrix (void)

Arguments
None

Comments
PushMatrix evacuates the rotation matrix to the stack. The stack is up to 20 levels.

Return Value
None

PopMatrix

Resets rotation matrix from stack

Format
void PopMatrix (void)

Arguments
None

Comments
PopMatrix resets the rotation matrix from the stack.

Return Value
None

gteMIMefunc

Adds differential data array from multiplication of vertex data
array by coefficient

Format
void gteMIMefunc (

SVECTOR *otp,

SVECTOR *dfp,

long n,

long p

)

Arguments
otp Input/output vertex array

dfp Input differential array

n Input vertex (differential) data number

p Input MIMe weight (control) coefficient

Comments
gteMIMefunc is a subroutine which executes interpolation using the differential data array

and the vertex data array used in the multiple interpolation (MIMe) operation.

p is the fixed decimal point data of the decimal 12bit.

This function executes at high speed the same operation as the following program.

void gteMIMefunc(SVECTOR *otp, SVECTOR *dfp, long n, long p)

{

int i;

for(i = 0; i < n; i++){

(otp+i)->x += ((int)((dfp+i)->x) * p)>>12;

(otp+i)->y += ((int)((dfp+i)->y) * p)>>12;

(otp+i)->z += ((int)((dfp+i)->z) * p)>>12;

}

}

The argument format is as follows.

p : (1,19,12)

otp, dfp optional

Return Value
None

GsInitGraph

Graphics system initialisation

Format
void GsInitGraph (

int x_res,

int y_res,

int intl,

int dither,

int vram

)

Arguments
x_res Horizontal resolution (256/320/384/512/640)

y_res Vertical resolution (240/480)

intl Interlace display flag (bit 0)

0: Non-interlace

1: Interlace

Double buffer offset mode (bit 2)

0: GTE offset

1: GPU offset

dither Whether or not dither when drawing

0: OFF

1: ON

vram Frame buffer mode

0: 16bit

1: 24bit

Comments
GsInitGraph initialises the graphics system.

The GPU setting is notified by the global variables GsDISPENV and GsDRAWENV, so

the program GPU setting can be confirmed and changed by referring to GsDISPENV and

GsDRAWENV.

The double buffer offset mode decides whether the double buffer offset is executed by

GTE or by GPU. It is easier to handle when executed by GPU because the double buffer

offset value is not included in the packet.

In the 24-bit mode, only image display is possible. Polygon drawing etc. is not possible.

Because initialisation of the graphics system includes GsIDMATRIX and GsIDMATRIX2

initialisation, none of the Gs * * * functions operate normally unless GsInitGraph() has

been called.

Return Value
None

GsInit3D

3D graphics system initialisation

Format
void GsInit3D (void)

Arguments
None

Comments
GsInit3D initialises the 3D graphics system within the library.

3D graphics system needs to be initialised by this function first, so that 3D processing

functions such as GsSetRefView(), GsInitCoordinate2() and GsSortObject4() can be used.

The following process is executed.

(1) The screen origin is held in the screen centre.

(2) The light source defaults to LIGHT_NORMAL.

Return Value
None

Notes
With this function, the graphics system must firstly be intialised by GsInitGraph().

See Also
GsInitGraph(), GsSetRefView(), GsInitCoordinate2(), GsSortObject4()

GsDefDispBuff

Double buffer definition

Format
void GsDefDispBuff (

int x0,

int y0,

int x1,

int y1,

)

Arguments
x0, y0 Buffer 0 origin (top left-hand) coordinates

x1, y1 Buffer 1 origin (top left-hand) coordinates

Comments
GsDefDispBuff defines the double buffer. (x0, y0) and (x1,y1) are specified by the

coordinate value within the frame buffer. In default, the buffer 0 becomes (0, 0) and buffer

1 becomes (0, y_res).

y_res is the vertical resolution specified by GsInitGraph(). The double buffer is cancelled

when (x0, y0) and (x1, y1) have the same coordinate values. Switching the double buffer

of the even number field and odd number field is automatically carried out if it is left in

this mode when the interlace mode is specified.

Double buffer switching is carried out by the GsSwapDispBuff() function.

The double buffer is executed by GPU or GTE offset. GsInitGraph() sets

whether execution of offset is by GPU or by GTE. If the double buffer is executed using

the GPU offset, the coordinate value is created in the coordinate system whose origin is

the top left-hand point of the double buffer in the packet. On the other hand, if the double

buffer is executed using the GTE offset, the coordinate value is created in the coordinate

system whose origin is the origin (top left-hand point) of the frame buffer in the packet.

Return Value
None

See Also
GsInitGraph(), GsSwapDispBuff()

GsSwapDispBuff

Double buffer switching

Format
void GsSwapDispBuff (void)

Arguments
None

Comments
GsSwapDispBuff changes the display buffer and drawing buffer according to double

buffer information that has been set by GsDefDispBuff(). Execution is usually carried out

immediately after vertical return section surge.

Also, the following processes are executed within the function.

(1) Display commencement address setting

(2) Cancellation of blanking

(3) Double buffer index setting

(4) 2 dimensional clipping switched

(5) GTE or GPU offset setting

(6) Offset setting

(7) PSDCNT increment

The double buffer is executed by the offset. The third argument of GsInitGraph() decides
whether the offset is set by GTE or by GPU (GsOFSGPU or GsOFSGTE is specified).

Return Value
None

Notes
If GPU is drawing, this function does not operate smoothly and it needs to be called

immediately after drawing completion has been confirmed by DrawSync(0) or after the

drawing has been ended by ResetGraph(1).

See Also
GsDefDispBuff()

GsGetActiveBuff

Gets drawing buffer number

Format
int GsGetActiveBuff (void)

Arguments
None

Comments
GsGetActiveBuff gets the double buffer index (PSDIDX). The index value is either 0 or 1.

The frame buffer top 2 dimensional address of the double buffer origin (top left

coordinate) is found by entering the index in the external variables PSDOFSX[] and

PSDOFSY[].

Return Value
The double buffer index (0 when buffer 0 and 1 when buffer 1) is returned.

See Also
PSDIDX

GsSetDrawBuffOffset

Drawing offset update

Format
void GsSetDrawBuffOffset (void)

Arguments
None

Comments
GsSetDrawBuffOffset updates the offset for drawing. The set value is represented in the

global conversion POSITION.

This offset is relative within the double buffer, and the offset value is maintained even if

the double buffer is switched.

The setting of GTE or GPU is executed if this function is called. The third argument of

GsInitGraph() decides whether the offset is executed by GTE or by GPU (GsOFSGPU or

GsOFSGTE is specified).

Return Value
None

Notes
This function does not operate smoothly if GPU is drawing, and it needs to be called

immediately after completion of drawing has been confirmed by DrawSync(0) or after

drawing has been ended by ResetGraph(1).

See Also
GsSetOrign(), GsSetOffset(), POSITION

GsSetOffset

Offset setting

Format
void GsSetOffset (

int offx,

int offy

)

Arguments
offx Drawing offset X

offy Drawing offset Y

Comments
GsSetOffset specifies the drawing offset. It is different from GsSetDrawBuffOffset() in

that GsSetDrawBuffOffset() sets the value of the global variable POSITION, whereas

GsSetOffset() sets the offset supplied by the argument.

Also, the value set by GsSetOffset() is temporary and the offset values that are set on

execution of GsSwapDispBuff() and GsSetDrawBuffOffset() become invalid. On the other

hand, the set values of GsSetDrawBuffOffset() are valid until changed by GsSetOrigin().

The offset supplied by the argument is relative within the double buffer. In other words,

the offset actually set is the base offset of the double buffer added to the offset supplied by

the argument.

The third argument of GsInitGraph() decides whether the offset is executed by GTE or by

GPU (GsOFSGPU or GsOFSGTE is specified).

Return Value
None

Notes
This function does not operate smoothly if GPU is drawing, and it needs to be called

immediately after completion of drawing has been confirmed by DrawSync(0) or after

drawing has been ended by ResetGraph(1).

See Also
GsSetDrawBuffOffset()

GsSetDrawBuffClip

Drawing clipping area update

Format
void GsSetDrawBuffClip (void)

Arguments
None

Comments
GsSetDrawBuffClip updates the drawing clip. It actually represents the clip value set by

GsSetClip2D(). The set value is valid until the GsSetDrawBuffClip() function is called

once more by a different clip value.

Moreover, this clip value is relative within the double buffer, and the position of the clip

does not change even if the double buffer is switched.

Return Value
None

Notes
This function does not operate smoothly if GPU is drawing, and it needs to be called

immediately after completion of drawing has been confirmed by DrawSync(0) or after

drawing has been ended by ResetGraph(1).

See Also
GsSetClip2D(), GsSetClip()

GsSetClip

Drawing clipping area setting

Format
void GsSetClip (

RECT *clip

)

Arguments
clip RECT structure for setting the clipping area

Comments
GSetClip sets the clip for drawing. The set value is valid until the GsSwapDispBuff()

function is called next. It is different from GsSetDrawBuffClip() in that the place where

the clip area can be specified by the argument and the validity period of the set value are

different.

Moreover, this clip value is relative within the double buffer.

Return Value
None

Notes
This function does not operate smoothly if GPU is drawing, and it needs to be called

immediately after completion of drawing has been confirmed by DrawSync(0) or after

drawing has been ended by ResetGraph(1).

See Also
GsSetDrawBuffClip()

GsGetTimInfo

Checks TIM format header

Format
void GsGetTimInfo (

unsigned long *tim,

GsIMAGE *im

)

Arguments
tim TIM data top address

im Pointer to image structure

Comments
TIM format information specified by the argument tim is stored in im.

The top of the TIM data is the address that skipped the ID. In other words, it has an offset

4 bytes forward from the top of the TIM file.

For file format, please refer to the Net Yaroze Members' Web site.

Return Value
None

See Also
GsIMAGE

GsMapModelingData

Maps TMD data to an actual address

Format
void GsMapModelingData (

unsigned long *p

)

Arguments
p Top address of TMD data

Comments
The offset address from the top of the TMD data is stored because at the time of TMD

data creation it is uncertain where it is going to be loaded onto the memory.

The GsMapModelingData() function converts this offset address into an actual address,

and this conversion must be carried out first of all in order to use the TMD data.

The TMD data top address is the one that skipped the ID. In other words, it has an offset 4

bytes forward from the top of the TMD file.

For file format, please refer to the Net Yaroze Members' Web site.

Return Value
None

Notes
A flag stands in the TMD data converted to an actual address, so that no side effects will

occur even if GsMapModelingData() is called for a second time.

GsLinkObject4

Links object and TMD data

Format
void GsLinkObject4 (

unsigned long *tmd,

GsDOBJ2 *obj_base,

unsigned long n

)

Arguments
tmd Top address of the linking TMD data

obj_base Array of the object structure to be linked

n Index of the linking object

Comments
GsLinkObject4 links the TMD data (nth) object with the object structure of GsDOBJ2, so

that TMD 3D objects can be handled by GsDOBJ2.

Return Value
None

Notes
Objects linked by GsLinkObject4() can be registered in OT by GsSortObject4().

See Also
GsSortObject4(), GsDOBJ2

GsSetRefView2

Viewpoint position setting

Format
int GsSetRefView2 (

GsRVIEW2 *pv

)

Arguments
pv Viewpoint position information (viewpoint: steady viewpoint

type)

Comments

GsSetRefView2 calculates the WSMATRIX (World Screen Matrix) from the viewpoint

information. If the viewpoint does not move, the WSMATRIX does not change and does

not need to be called each frame. However, when the viewpoint moves, changes are not

represented unless the WSMATRIX is called each frame.

When super of the GsRVIEW2 member is set outside WORLD, even if other parameters

are not changed, GsSetRefView2() needs to be called each frame because the viewpoint

moves if the parent coordinate system parameters change.

Return Value
0 is returned when viewpoint setting is successful, 1 when it fails.

See Also
GsRVIEW2,GsWSMATRIX, GsSetView2()

GsSetView2

Viewpoint setting

Format
int GsSetView2 (

GsVIEW2 *pv

)

Arguments
pv Viewpoint position information (matrix type)

Comments
GsSetView2 directly sets the WSMATRIX (World Screen Matrix). If the viewpoint is

moved, errors can arise due to inaccuracy in the process that searches WSMATRIX from

the viewpoint steady viewpoint using GsSetRefView2(), and so it is advantageous to use

GsSetView2().

When super of the GsVIEW2 member is set outside WORLD, GsSetRefView2() needs to

be called each frame even if other parameters are not changed. This is because the

viewpoint moves unless the parent coordinate system parameters change.

The screen aspect ratio is regulated automatically if GsIDMATRIX2 is used in the basic

matrix.

Return Value
0 is returned if setting is successful, 1 if it fails.

See Also
GsVIEW2, GsWSMATRIX, GsSetRefView2()

GsSetProjection

Projection plane position setting

Format
void GsSetProjection (

unsigned short h

)

Arguments
h Distance between viewpoint and projection plane (projection

distance),

 default is 1000.

Comments
GsSetProjection regulates the field of view.

The projection is the distance from the viewpoint to the projection plane.

The size of the projection plane is set by the GsInitGraph() arguments xres, yres. The field

of view narrows if the projection distance is enlarged and expands if it is reduced, because

the size of the projection plane is fixed according to the resolution.

Be careful, because sometimes aspect ration is not 1 to 1, depending on the resolution. In

this case, the scale of Y coordinates is made 1/2 and the aspect ratio is adjusted.

Resolution 640x480 640x240 320x240

Aspect ratio 1:1 2:1 1:1

Return Value
None

GsSetFlatLight

Parallel light source setting

Format
void GsSetFlatLight (

unsigned short id,

GsF_LIGHT *lt

)

Arguments
id Light source number (0,1,2)

lt Light source information

Comments
GsSetFlatLight sets the parallel light source. The light source can be set up to three (id =

0, 1, 2).

Light source information is given by the GsF_LIGHT structure.

Return Value
None

Notes
Even if the contents of the GsF_LIGHT structure are rewritten, the setting is not

represented unless this function is called.

See Also
GsF_LIGHT, GsSetAmbient()

GsSetLightMode

Light source mode setting

Format
void GsSetLightMode (

unsigned short mode

)

Arguments
mode Light source mode (0~1)

 0: normal lighting

 1: normal lighting fog ON

Comments
GsSetLightMode sets the light source mode.

The light source calculation method can also be set by the status bit (attribute) of each

object (GsDOBJ2). Setting by the status bit is used in precedence to the status setting.

Return Value
None

GsSetFogParam

Fog parameter setting

Format
void GsSetFogParam (

GsFOGPARAM *fogparam

)

Arguments
fogparam Pointer to fog parameter structure

Comments
GsSetFogParam carries out fog parameter setting. Fog is only effective if the light mode is

1.

Return Value
None

See Also
GsFOGPARAM, GsSetLightMode()

GsSetAmbient

Ambient colour setting

Format
void GsSetAmbient (

unsigned short r,

unsigned short g,

unsigned short b

)

Arguments
r, g, b RGB value of the ambient colour (0~4095)

Comments
GsSetAmbient sets ambience (ambient light). Setting is carried out in each of r, g and b

according to what fraction of unlit parts there are to lit parts. 1/1 becomes 4096 and 1/8

becomes 4096/8.

Return Value
None

See also
GsSetFlatLight()

GsInitCoordinate2

Local coordinate system initialisation

Format
void GsInitCoordinate2 (

GsCOORDINATE2 *super,

GsCOORDINATE2 *base

)

Arguments
super Pointer to parent coordinate system

base Pointer to (initialising) coordinate system

Comments
GsInitCoordinate2 initialises the local coordinate system. Initialisation of base- >coord is

by the unit matrix, and base- >super by the coordinate system specified by the argument.

Return Value
None

See Also
GsCOORDINATE2

GsGetLw

 Calculates local world matrix

Format
void GsGetLw (

GsCOORDINATE2 *coord,

MATRIX *m

)

Arguments
coord Pointer to local coordinate system

m Pointer to matrix

Comments
GsGetLw calculates the local world perspective conversion matrix from coord of the

matrix type coordinate system GsCOORDINATE2 specified by the argument and stores

the result in the MATRIX type structure m.

Also, the calculation result of each node of the hierarchical coordinate system is held in

order to increase speed, and calculation up to nodes that are not changed is omitted even

when the GsGetLw() function is next called.

This is controlled by the GsCOORDINATE2 flag (1 is substituted for the

GsCOORDINATE2 flag after calculation). However, even when 1 is substituted for the

flag, note that calculation will be carried out if the parent node has been changed.

Return Value
None

See Also
GsGetLws(), GsSetLightMatrix()

GsGetLs

Calculates local screen matrix

Format
void GsGetLs (

GsCOORDINATE2 *coord,

MATRIX *m

)

Arguments
coord Pointer to local coordinate system

m Pointer to matrix

Comments
GsGetLs calculates the perspective conversion matrix of the local screen from coord of

the matrix type coordinate system GsCOORDINATE2 specified by the argument, and the

result is stored in the MATRIX type structure m.

Also, the calculated result of each node of the hierarchical coordinate system is held in

order to increase speed, and calculation up to nodes that are not changed is omitted even

when the GsGetLw() function is next called.

This is controlled by the GsCOORDINATE2 flag (1 is substituted for the

GsCOORDINATE2 flag after calculation). However, even when 1 is substituted for the

flag, note that calculation will be carried out if the parent node has been changed.

Return Value
None

See Also
GsSetLsMatrix()

GsGetLws

Calculates both local world and local screen matrices

Format
void GsGetLws (

GsCOORDINATE2 *coord2

MATRIX *lw,

MATRIX *ls

)

Arguments
coord2 Pointer to local coordinate system

lw Pointer to local world coordinate system

ls Pointer to local screen coordinate system

Comments
GsGetLws calculates both the local world coordinates and the local screen coordinates at

the same time from the local coordinate system coord2, and stores them in lw and ls. It is

faster than continuously calling GsGetLw() and GsGetLs().

The local world matrix must be specified if light source calculation is carried out at the

time of execution, but in this case it is faster to search once with GsGetLws().

Return Value
None

See Also
GsGetLs(), GsGetWs()

GsScaleScreen

Scales screen coordinate system

Format
void GsScaleScreen (

SVECTOR *scale

)

Arguments
scale The scale factor (12bit fixed decimal point format)

 GsScaleScreen sets the scale factor for the original screen

coordinate system normally set by GsSetView2() and

GsSetRefView2().

 By entering ONE for vx, vy and vz , it returns to the original.

Comments
GsScaleScreen carries out scaling of the screen coordinate system with respect to the

world coordinate system.

Problems such as the closeness of Far Clip occur because the screen coordinate system is

only 16bit whereas the world coordinate system has a 32bit space. GsScaleScreen() is a

function that resolves this problem, carries out scaling of the screen coordinates and

covers a wider area for the world coordinates.

For example, the screen coordinate system expands to a 17bit equivalent size when

ONE/2 is specified in (vx,vy,vz). However, as precision is 16bit, the bottom 1 bit is

invalid.

At this time, screen coordinate systems with different scales should not be registered in

OT with the same scale. For example, registration must be carried out by shifting to one

extra bit, in order to register objects, calculated with the screen coordinate system of the

normal scaling, to the OT that registered the objects that were half the scale of the screen

coordinate system.

Return Value
None

GsSetLsMatrix

Sets local screen matrix

Format
void GsSetLsMatrix (

MATRIX *mp

)

Arguments
mp Local screen matrix to be set

Comments
GsSetLsMatrix sets the local screen matrix in GTE.

If perspective conversion process is carried out using GTE, the local screen matrix needs

to be pre-set in GTE.

Because the GsSortObject4() function performs perspective conversion using GTE,

GetLsMatrix() needs to be called beforehand.

Return Value
None

See Also
GsSortObject4(), GsGetLs()

GsSetLightMatrix

Sets light matrix

Format
void GsSetLightMatrix (

MATRIX *mp

)

Arguments
mp Local screen light matrix to be set

Comments
GsSetLightMatrix multiplies the matrix of three light source vectors and the local screen

light matrix mp supplied by the argument, and sets in GTE.

Depending on the type of modelling data to be handled, the GsSortObject4() function may

perform light source calculation at the time of execution. In this case too, the light matrix

needs to be pre-set using GsSetLightMatrix().

The matrix set as the GsSetLightMatrix() argument is normally the local world matrix.

Return Value
None

See Also
GsSortObject4(), GsGetLw()

GsClearOt

OT initialisation

Format
void GsClearOt (

unsigned short offset,

unsigned short point,

GsOT *otp

)

Arguments
offset Ordering table offset value

point Ordering table representative value Z

otp Pointer to ordering table

Comments
GsClearOT initialises the ordering table displayed by otp. offset is the Z value at the top

of that ordering table, and point is the Z value referred to when inserting that ordering

table into another ordering table.

Also, the length of OT must be specified in advance in order to confirm the size to be

cleared.

Return Value
None

See Also
GsOT, GsDrawOt()

GsDrawOt

Execution of drawing command allocated to OT

Format
void GsDrawOt (

GsOT *otp

)

Arguments
otp Pointer to OT

Comments
GsDrawOt starts execution of the drawing command registered in OT displayed

by otp.

GsDrawOt() immediately returns because the drawing process is carried out in the

background.

Notes
If GPU is drawing, this function does not operate smoothly and it needs to be called

immediately after drawing completion has been confirmed by DrawSync(0) or after

drawing has been ended by ResetGraph(1).

Return Value
None

See Also
GsOT, GsClearOt()

GsSortObject4

Allocates object to ordering table

Format
void GsSortObject4 (

GsDOBJ2 *objp,

GsOT *otp,

long shift,

u_long *scratch

)

Arguments
objp Pointer to object

otp Pointer to OT

shift How many bits the value of Z is shifted to the right at the time

 of allocation to OT

scratch Specifies scratchpad address

Comments
GsSortObject4 carries out perspective conversion and light source calculation for 3D

objects to be handled by GsDOBJ2, and generates the drawing command in the packet

area specified by GsSetWorkBase(). Next, it Z sorts the generated drawing command and

allocates it to OT displayed by otp.

The precision of Z can be adjusted by the value of shift. The maximum value of the

ordering table size (resolution) is 14bit. However, if for example it is 12bit, then the value

of shift is 2 (=14 - 12). At this time take care not to go over the area of the ordering table.

scratch is used as work when automatic division is carried out.

In order to validate the division by attribute which is the member of objp, OR is carried

out by GsDIV5, which is the member of macro GsDIV1~objp defined by libps.h. One

polygon

is divided into 4 sections of 2x2 at the time of GsDIV1 and into 1024 sections of 32x32 at

the time of GsDIV5.

Also, scratchpad is cache memory and 256 words are packaged from 0x1f800000.

Return Value
None

See Also
GsDOBJ2, GsSetWorkBase()

GsSetWorkBase

Sets drawing command storage address

Format
void GsSetWorkBase (

PACKET *base_addr

)

Arguments
base_addr Address that stores the drawing command

Comments
GsSetWorkBase sets the memory address that stores the drawing primitives generated by

such functions as GsSortObject4() and GsSortSprite().

At the start of the process of each frame, it must be set in the top address of the packet

area secured by the user.

Return Value
None

See Also
GsSortObject4(), GsSortSprite(), GsSortFastSprite(), GsOUT_PACKET_P

GsGetWorkBase

Gets current drawing command storage address

Format
PACKET *GsGetWorkBase (void)

Arguments
None

Comments
GsGetWorkBase gets the current drawing primitive packet address

The top address of the unused area can be got.

Return Value
The address that creates the next drawing primitive packet

See Also
GsSetWorkBase(), GsOUT_PACKET_P

GsSortClear

Registers drawing clear command in OT

Format
void GsSortClear (

unsigned char r,

unsigned char g,

unsigned char b,

GsOT *otp

)

Arguments
r, g, b Background colour RGB Value

otp Pointer to OT

Comments
GsSortClear sets the drawing clear command at the top of OT displayed by otp.

Return Value
None

Notes
GsSortClear only registers the clear command in the ordering table, and is not executed

unless the drawing is started by the GsDrawOt() function.

GsSortSprite

 Registers sprite in OT

Format
void GsSortSprite (

GsSPRITE *sp,

GsOT *otp,

unsigned short pri

)

Arguments
sp Pointer to sprite

otp Pointer to OT

pri Position in OT

Comments
GsSortSprite allocates the sprite displayed by sp to the ordering table displayed by otp.

The parameters of sprite display positions, etc. are all supplied by the sp members.

pri is the priority order on the sprite ordering table. The highest value is 0 and the lowest

value depends on the size of the ordering table. If a numerical value of the size of the

ordering table or more is specified, it is clipped to the maximum value got by the ordering

table.

Return Value
None

See Also
GsOT, GsSPRITE, GsSortFastSprite()

GsSortFastSprite

 Registers sprite in OT

Format
void GsSortFastSprite(

GsSPRITE *sp,

GsOT *otp,

unsigned short pri

)

Arguments
sp Pointer to sprite

otp Pointer to OT

pri Position in OT

Comments
GsSortSprite allocates the sprite displayed by sp to the ordering table displayed by otp.

The parameters of sprite display positions, etc. are all supplied by the sp members.

pri is the priority order on the sprite ordering table. The highest value is 0 and the lowest

value depends on the size of the ordering table. If a numerical value of the size of the

ordering table or more is specified, it is clipped to the maximum value got by the ordering

table.

In comparison with the GsSortSprite() function, GsSortFastSprite() is processed at high

speed, although the scaling rotation function cannot be used. At this time, the value of the

sprite structure members, mx, my, scalex, scaley and rotate are disregarded.

Return Value
None

See Also
GsSortSprite(),GsSPRITE

GsInitFixBg16

Initialises high-speed BG working area

Format
void GsInitFixBg16 (

GsBG *bg,

unsigned long *work

)

Arguments
bg Pointer to GsBG

work Pointer to working area (primitive area)

Comments
GsInitFixBg16 initialises the working area used by the GsSortFixBg16 () function. The

size of the necessary array varies according to the screen resolution. The size can be found

by the following formula (unit is long).

Size = (((ScreenW/CellW+1)*(ScreenH/CellH+1+1)*6+4)*2+2)

ScreenH: Screen height vertical dot number (240/480)

ScreenW: Screen height horizontal dot number (256/320/384/512/640)

CellH: Cell height (pixel number)

CellW: Cell width (pixel number)

GsInitFixBg16() should only be executed once, and does not need to be executed every

frame.

Return Value
None

See Also
GsSortFixBg16()

GsSortFixBg16

Registers high-speed BG to OT

Format
void GsSortFixBg16 (

GsBG *bg,

unsigned long *work,

GsOT *otp,

unsigned short pri

)

Arguments
bg Pointer to GsBG

work Pointer to working area (primitive area)

otp Pointer to OT

pri Position in OT

Comments
GsSortFixBg16 carries out BG data registration processing to the ordering table.

BG rotation/scaling/reduction not possible.

Cell size fixed (16x16).

Texture pattern colour mode 4bit/8bit only.

Map size is optional.

Scrolling possible (1 pixel unit)

Full screen only

This function needs working area for storing the drawing primitives. The working area is

prepared as an unsigned long type array, and initialisation by GsInitFixBg16() needs to be

carried out in advance.

Packet Area (the area set by GsSetWorkBase()) is not used.

Return Value
None

See Also
GsInitFixBg16()

GsSortLine

Registers straight lines to OT

Format
void GsSortLine (

GsLINE *lp,

GsOT *otp,

unsigned short pri

)

Arguments
lp Pointer to GsLINE

otp Pointer to OT

pri Position in OT

Comments
GsSortLine allocates straight lines that are displayed by lp to ordering table displayed by

otp.

Single colour straight lines are registered in OT by GsSortLine().

Return Value
None

See Also
GsSortGLine()

GsSortGLine

Registers straight lines to OT

Format
void GsSortGLine (

GsGLINE *lp,

GsOT *otp,

unsigned short pri

)

Arguments
lp Pointer to GsGLINE

otp Pointer to OT

pri Position in OT

Comments
GsSortGLine allocates straight lines that are displayed by lp in the ordering table

displayed by otp.

Straight lines with gradation are registered in OT by GsSortGLine().

Return Value
None

See Also
GsSortLine()

GsSortBoxFill

Registers rectangles to OT

Format
void GsSortBoxFill (

GsBOXF *bp,

GsOT *otp,

unsigned short pri,

)

Arguments
bp Pointer to GsBOXF

otp Pointer to OT

pri Position in OT

Comments
GsSortBoxFill allocates rectangles displayed by bp to ordering table displayed by otp.

Return Value
None

GsSortOt

Allocates OT to another OT

Format
GsOT *GsSortOt (
GsOT *ot_src,
GsOT *ot_dest
)

Arguments
ot_src Pointer to assigned source OT

ot_dest Pointer to assigned destination OT

Comments
GsSortOt assigns the OT displayed by ot_src to ot_dest.

The OTZ value used at this time is the representative value in the ot_src point field.

The integrated OT is assigned to ot_dest.

Return Value
Pointer to integrated OT

See Also
GsOT

GsSetClip2D

2 dimensional clipping setting

Format
void GsSetClip2D (

RECT *rectp

)

Arguments
rectp Clip area

Comments
GsSetClip2D sets the area displayed by rectp as the clipping area.

This setting is not influenced by the double buffer, and so once it is set, the same area is

automatically clipped even if the double buffer is switched.

GsSetDrawBuffClip() needs to be called in order to validate this setting immediately

afterwards. If GsSetDrawBuffClip() is not called, the setting becomes valid from the next

frame.

Return Value
None

GsSetOrign

Screen origin position setting

Format
void GsSetOrign (

int x,

int y

)

Arguments
x Screen origin position X

y Screen origin position Y

Comments
GsSetOrign specifies the drawing offset.

The offset value set by GsSetOffset() is temporary and whereas the offset set when

GsSwapDispBuff() or GsSetDrawBuffOffset() is called becomes invalid, the offset value

set by GsSetOrign() is valid until next changed by GsSetOrign().

The offset supplied by the argument is relative within the double buffer. In other words,

the offset actually set is the offset supplied by the argument added to the offset of the

double buffer base. In reality, it is set by offx and offy of the global variable POSITION.

Notes
The third argument of GsInitGraph() decides whether the offset is executed by GTE or by

GPU (GsOFSGPU or GsOFSGTE is specified).

Return Value
None

GsIncFrame

Updates frame ID

Format
GsIncFrame()

Arguments
None

Comments
GsIncFrame is the macro called inside GsSwapDispBuff(). It applies one increment to

PSDCNT. Although PSDCNT is 32bit, it does not become 0 even if it is recycled, and it

starts from 1.

PSDCNT is referred to when the validity of the matrix cache is determined by GsGetLw(),

GsGetLs() and GsGetLws().

If the double buffer is switched without using GsSwapDispBuff() and GsGetLw(),

GsGetLs() and GsGetLws() are used, this macro needs to be called every time the double

buffer is switched.

See Also
PSDCNT, GsGetLw(), GsGetLs(), GsGetLws(), GsSwapDispBuff()

Table: Graphics External Variables

Global Type Description

CLIP2 RECT 2 dimensional clipping area

PSDOFSX [2] unsigned short Double buffer base point (X coordinate)

Set by GsDefDispbuff()

PSDOFSY [2] unsigned short Double buffer base point (Y coordinate)

Set by GsDefDispbuff()

PSDIDX unsigned short Double buffer index

PSDCNT unsigned long Number incremented by frame switch

POSITION _GsPOSITION 2 dimensional offset

GsDRAWENV DRAWENV Drawing Environment

GsDISPENV DISPENV Display Environment

GsLSMATRIX MATRIX Local screen matrix

Set by GsSetLs()

GsWSMATRIX MATRIX World screen matrix

Set by GsSetRefView(), etc.

GsLIGHT_MODE int Default light mode

GsLIGHTWSMATRIX MATRIX Light matrix

Set by GsSetFlatLight()

GsIDMATRIX MATRIX Unit matrix

GsIDMATRIX2 MATRIX Unit matrix (including aspect conversion)

GsOUT_PACKET_P unsigned long Pointer holding top of packet area

Set by GsSetWorkBase()

GsLMODE unsigned long Attribute decoding result (light mode)

GsLIGNR unsigned long Attribute decoding result (light disregarded)

GsLIOFF unsigned long Attribute decoding result (without shading)

GsNDIV unsigned long Attribute decoding result (division number)

GsTON unsigned long Attribute decoding result (semi-transparency)

GsDISPON unsigned long Attribute decoding result (display/ no display

2
Sound Functions

SndVolume

Volume

Structure
struct SndVolume {

unsigned short left;

unsigned short right;

};

Members
left L channel volume value

right R channel volume value

SsVabTransfer

Recognises and transmits sound source data

Format
short SsVabTransfer (

unsigned char vh_addr,

unsigned char vb_addr,

short vabid,

short i_flag

)

Arguments
vh_addr VH data top address

vb_addr VB data top address

vabid VAB identification number

i_flag Fixed at 1

Comments
SsVabTransfer recognises the sound source header list (VH data) specified by vh_addr,

and transmits the sound source data (VB data) specified by vb_addr to the SPU sound

buffer. It specifies the VAB identification number in vabid. It searches and allocates an

available VAB identification number (0 - 15) when vabid is -1.

Return Value
VAB identification number

In the case of failure, the following values are returned according to the cause.

-1 VAB ID cannot be assigned or VH abnormality

-2 VB abnormality

-3 or below Other abnormalities

See Also
SsVabClose()

SsVabClose

Closes VAB data

Format
void SsVabClose(

short vab_id

)

Arguments
vab_id VAB data id

Comments
SsVabClose closes VAB data that holds vab_id.

Return Value
None

See Also
SsVabTransfer()

SsSeqOpen

Opens SEQ data

Format
short SsSeqOpen (

unsigned long* addr,

short vab_id

)

Arguments
addr SEQ data main memory top address

vab_id VAB id

Comments
SsSeqOpen analyses the SEQ data in the main memory, and returns the SEQ access

number.

A maximum of 32SEQ data can be opened at the same time and if more than that are

opened, -1 becomes the return value.

Return Value
SEQ access number (the number to be used within the SEQ data access function and the

number of the SEQ data control table held internally).

See Also
SsSeqClose()

SsSeqClose

Closes SEQ data

Format
void SsSeqClose (

short seq_access_num

)

Arguments
seq_access_num SEQ access number

Comments
SsSeqClose closes the SEQ data holding the seq_acces_num that is no longer necessary.

Return Value
None

See Also
SsSeqOpen()

SsSeqPlay

SEQ data reading (musical performance)

Format
void SsSeqPlay (

short seq_access_num,

char play_mode,

short l_count

)

Arguments
seq_access_num SEQ access number

play_mode Performance mode

 SSPLAY_PAUSESwitches to pause state

 SSPLAY_PLAY Performs immediately

l_count Number of tune repetitions

Comments
According to the play_mode value, SsSeqPlay can select whether to begin reading

(performing) the SEQ data immediately or switch to the pause state at the SEQ data top

(tune top). At this time, it specifies the number of tune repetitions in l_count.

SSPLAY_INFINITY is specified if there is an infinite number of performances.

Return Value
None

See Also
SsSeqPause(), SsPlayBack(), SsSeqStop()

SsSeqPause

Temporarily stops SEQ data reading (pause)

Format
void SsSeqPause (

short seq_access_num

)

Arguments
seq_access_num SEQ access number

Comments
SsSeqPause temporarily stops the reading (performance) of SEQ data holding

seq_access_num.

Return Value
None

See Also
SsSeqPlay(), SsSeqReplay()

SsSeqReplay

Restarts SEQ data reading (replay)

Format
void SsSeqReplay (

short seq_access_num

)

Arguments
seq_access_num SEQ access number

Comments
SsSeqReplay restarts the reading of the SEQ data holding seq_access_num that has been

temporarily suspended by SsSeqPause.

Return Value
None

See Also
SsSeqPlay(), SsSeqPause()

SsSeqStop

Stops SEQ data reading (stop)

Format
void SsSeqStop (

short seq_access_num

)

Arguments
seq_access_num SEQ access number

Comments
SsSeqStop ends the reading (performance) of the SEQ data holding seq_access_num.

Return Value
None

See Also
SsSeqPlay()

SsSeqSetVol

SEQ volume setting

Format
void SsSeqSetVol (

short seq_access_num,

short voll,

short volr

)

Arguments
seq_access_num SEQ access number

voll L channel main volume value

volr R channel main volume value

Comments
SsSeqSetVol sets the main volume of the tune holding seq_access_num in sizes specified

in the L and R channels respectively. 0 to 127 can be set.

Return Value
None

See Also
SsSeqGetVol()

SsSeqGetVol

Gets SEQ volume

Format
void SsSeqGetVol (

short access_num,

short seq_num,

short *voll,

short *volr

)

Arguments
access_num SEQ access number

seq_num Fixed at 0

voll SEQ L volume value

volr SEQ R volume value

Comments
SsSeqGetVol returns the current L and R volume values of SEQ to voll and volr

respectively.

Return Value
None

See Also
SsSeqSetVol()

SsSeqSetNext

Next SEQ data specification

Format
void SsSeqSetNext (

short seq_access_num1,

short seq_access_num2

)

Arguments
seq_access_num1 SEQ access number

seq_access_num2 SEQ access number

Comments
SsSeqSetNext specifies the access number seq_access_num2 of the SEQ data next to be

performed from SEQ data holding seq_access_num1.

Return Value
None

SsSeqSetRitardando

Slows tempo

Format
void SsSeqSetRitardando (

short seq_access_num,

long tempo,

long v_time

)

Arguments
seq_access_num SEQ access number

tempo Tune tempo

v_time Time (tick unit)

Comments
SsSeqSetRitardando slows the data holding seq_access_num until resolution of tempo in

v_time.

However, if the specified resolution is greater (faster) than the current resolution, the

same operation as SsSeqSetAccelerando is carried out.

Return Value
None

See Also
SsSeqSetAccelerando()

SsSeqSetAccelerando

Accelerates tempo

Format
void SsSeqSetAccelerando (

short seq_access_num,

long tempo,

long v_time

)

Arguments
seq_access_num SEQ access number

tempo Tune tempo

v_time Time (tick unit)

Comments
SsSeqSetAccelerando accelerates the data holding seq_access_num until resolution of

tempo in v_time.

However, if the specified resolution is smaller (slower) than the current resolution, the

same operation as SsSeqSetRitardando is carried out.

Return Value
None

See Also
SsSeqSetRitardando()

SsSetMVol

Main volume value setting

Format
void SsSetMVol (

short voll,

short volr

)

Arguments
voll L channel volume value

volr R channel volume value

Comments
SsSetMVol sets the main volume value in voll and volr respectively. Each can be set from

0 to 127.

It is essential to set it before SEQ data is played.

Return Value
None

See Also
SsGetMVol()

SsGetMVol

Gets main volume value

Format
void SsGetMVol (

SndVolume *m_vol

)

Arguments
m_vol Main volume value

Comments
SsGetMVol assigns the main volume value to m_vol.

Return Value
None

See Also
SsSetMVol()

SsSetMute

Mute setting

Format
void SsSetMute (

char mode

)

Arguments
mode Setting mode

 SS_MUTE_ON Mute on

 SS_MUTE_OFF Mute off

Comments
SsSetMute carries out mute setting.

Return Value
None

See Also
SsGetMute()

SsGetMute

Gets mute attributes

Format
char SsGetMute (void)

Comments
SsGetMute gets mute attributes.

Return Value
Mute attributes.

SS_MUTE_ON Mute on

SS_MUTE_OFF Mute off

See Also
SsSetMute()

SsPlayBack

SEQ data reading

Format
void SsPlayBack (

short access_num,

short seq_num,

short l_count

)

Arguments
access_num SEQ access number

seq_num Fixed at 0

l_count Number of tune repetitions

Comments
SsPlayBack stops the tune during the current performance, and starts performance by

returning to the top of that tune.

It specifies the number of tune repetitions in l_count. SSPLAY_INFINITY is specified in

the case of an infinite number of performances.

Return Value
None

See Also
SsSeqPlay()

SsSetTempo

Sets tempo

Format
void SsSetTempo (

short access_num,

short seq_num,

short tempo

)

Arguments
access_num SEQ access number

seq_num Fixed at 0

tempo Tune tempo

Comments
SsSetTempo sets the tempo.

This is valid if the tempo set by SsSeqPlay() is to be changed. After this function has been

called, the performance is changed to the newly set tempo and played.

Return Value
None

SsIsEos

Judges whether or not in mid-performance

Format
short SsIsEos (

short access_num,

short seq_num

)

Arguments
access_num SEQ access number

seq_num Fixed at 0

Comments
SsIsEos judges whether or not the specified tune is in mid-performance.

Return Value
1 is returned if in mid-performance, 0 if not.

SsSetSerialAttr

CD audio attribute setting

Format
void SsSetSerialAttr (

char s_num,

char attr,

char mode

)

Arguments
s_num Fixed as SS_CD

attr Attribute value

mode Setting mode

Comments
SsSetSerialAttr carries out attribute setting relating to CD audio.

attr = SS_MIX Mixing

attr = SS_REV Reverberation

mode = SS_SON attr on

mode = SS_SOFF attr off

Return Value
None

See Also
SsGetSerialAttr()

SsGetSerialAttr

Gets CD audio attribute value

Format
char SsGetSerialAttr (

char s_num,

char attr

)

Arguments
s_num Fixed at SS_CD

attr Attribute

Comments
SsGetSerialAttr returns the CD audio attribute value.

attr = SS_MIX Mixing

attr = SS_REV Reverberation

Return Value
Attribute value: 1 is returned if on and 0 if off.

See Also
SsSetSerialAttr()

SsSetSerialVol

CD audio volume value setting

Format
void SsSetSerialVol (

short s_num,

short voll,

short volr

)

Arguments
s_num Fixed as SS_CD

voll L channel volume value

volr R channel volume value

Comments
SsSetSerialVol sets the CD volume value in voll and volr.

The volume value can be set from 0 to 127.

Return Value
None

See Also
SsGetSerialVol()

SsGetSerialVol

Gets CD audio volume value

Format
void SsGetSerialVol (

char s_num,

SndVolume *s_vol

)

Arguments

s_num Fixed at SS_CD

s_vol CD audio volume value

Comments
SsGetSerialVol returns the CD audio volume value to s_vol.

Return Value
None

See Also
SsSetSerialVol()

SsUtKeyOn

Keys on voice

Format
short SsUtKeyOn (

short vabId,

short prog,

short tone,

short note,

short fine,

short voll,

short volr

)

Arguments
vabId VAB number

prog Program number

tone Tone number

note Half tone unit pitch specification (note number)

fine Detailed pitch specification (100/127 cent specification)

voll Volume (left)

volr Volume (right)

Comments
SsUtKeyOn specifies and keys on the volume number (0 to 127), tone number (0 to 15)

and VAB number for SE, and returns the allocated voice number.

Return Value
The voice number (0 to 23) used by key-on is returned.

-1 is returned in the event of failure.

See Also
SsUtKeyOff(), SsUtAllKeyOff()

SsUtKeyOff

Keys off voice

Format
short SsUtKeyOff (

short voice,

short vabId,

short prog,

short tone,

short note

)

Arguments
voice Voice number

vabId VAB number

prog Program number

tone Tone number

note Half tone unit pitch specification (note number)

Comments
SsUtKeyOff keys off the voice that was keyed on by SsUtKeyOn.

Return Value
0 is returned if successful, -1 if it fails.

See Also
SsUtKeyOn(), SsUtAllKeyOff()

SsUtPitchBend

Bends pitch

Format
short SsUtPitchBend (

short voice,

short vabId,

short prog,

short note,

short pbend

)

Arguments
voice Voice number

vabId VAB number

prog Program number

note Half tone unit pitch specification (note number)

pbend Pitch bend value

Comments
SsUtPitchBend bends pitch of voice keyed on by SsUtKeyOn().

Return Value
0 is returned if successful, -1 if it fails.

See Also
SsUtChangePitch()

SsUtChangePitch

Changes pitch

Format
short SsUtChangePitch (

short voice,

short vabId,

short prog,

short old_note,

short old_fine,

short new_note,

short new_fine

)

Arguments
voice Voice number

vabId VAB number

prog Program number

old_note Note number at the time of SsUtKeyOn

olde_fine Detailed pitch at the time of SsUtKeyOn (note number)

new_note Note number to be changed

new_fine Detailed pitch to be changed (note number)

Comments
SsUtChangePitch changes the pitch of the voice keyed on by SsUtKeyOn().

Return Value
0 is returned if successful, -1 if it fails.

See Also
SsUtPitchBend()

SsUtSetVVol

Sets voice volume

Format
short SsUtSetVVol (

short vc,

short voll,

short volr

)

Arguments
vc Voice number

voll Volume (left)

volr Volume (right)

Comments
SsUtSetVVol sets in detail the voice volume keyed on by SsUtKeyOn().

Return Value
0 is returned if successful, -1 if it fails.

See Also
SsUtGetVVol()

SsUtGetVVol

Gets voice volume

Format
short SsUtGetVVol (

short vc,

short *voll,

short *volr

)

Arguments
vc Voice number

voll Volume (left)

volr Volume (right)

Comments
SsUtGetVVol returns the detailed value of the voice volume keyed on by SsUtKeyOn().

Return Value
0 is returned if successful, -1 if it fails.

See Also
SsUtSetVVol()

SsUtReverbOn

Reverberation on

Format
void SsUtReverbOn (void)

Arguments
None

Comments
SsUtReverbOn turns on the reverberation with the set type and depth.

Return Value
None

See Also
SsUtReverbOff()

SsUtReverbOff

Reverberation off

Format
void SsUtReverbOff (void)

Arguments
None

Comments
SsUtReverbOff turns the reverberation off.

Return Value
None

See Also
SsUtReverbOn()

SsUtSetReverbType

Sets reverberation type

Format
short SsUtSetReverbType (

short type

)

Arguments
type Reverberation type

Type Mode Delay time * Feedback*

SS_REV_TYPE_OFF Off X X

SS_REV_TYPE_ROOM Room X X

SS_REV_TYPE_STUDIO_A Studio (small) X X

SS_REV_TYPE_STUDIO_B Studio (medium) X X

SS_REV_TYPE_STUDIO_C Studio (large) X X

SS_REV_TYPE_HALL Hall X X

SS_REV_TYPE_SPACE Space echo X X

SS_REV_TYPE_ECHO Echo O O

SS_REV_TYPE_DELAY Delay O O

SS_REV_TYPE_PIPE Pipe echo X X

* Delay time and Feedback specification by reverberation type is possible

Comments
SsUtSetReverbType sets the reverberation type.

The reverberation depth is automatically set to 0 when the reverberation type is set.

When data is left in the reverberation work area, noise appears as soon as the depth is set,

so the following procedure should be used.

SsUtSetReverbType(SS_REV...);

SsUtReverbOn();

:

Takes several seconds

:

SsUtSetReverbDepth(64,64);

Number and type response as above

Return Value
If setting is carried out correctly, the set type number is returned.

If setting is carried out incorrectly, -1 is returned.

See Also
SsUtGetReverbType(), SsUtSetReverbDepth(), SsUtSetReverbFeedback(),

SsUtSetReverbDelay()

SsUtGetReverbType

Gets reverberation type

Format
short SsUtGetReverbType (void)

Arguments
None

Comments
SsUtGetReverbType gets the current reverberation type value.

Return Value
Current reverberation type value

See Also
SsUtSetReverbType()

SsUtSetReverbDepth

Sets reverberation depth

Format
void SsUtSetReverbDepth (

short ldepth,

short rdepth

)

Arguments
ldepth 0~127

rdepth 0~127

Comments

SsUtSetReverbDepth sets the reverberation depth.

Return Value
None

See Also
SsUtSetReverbType()

SsUtSetReverbFeedback

Sets feedback amount

Format
void SsUtSetReverbFeedback (

short feedback

)

Arguments
feedback 0~127

Comments
SsUtSetReverbFeedback sets the feedback amount if the echo type reverberation is used.

Return Value
None

See Also
SsUtSetReverbType()

SsUtSetReverbDelay

Sets delay amount

Format
void SsUtSetReverbDelay (

short delay

)

Arguments
delay 0~127

Comments
SsUtSetReverbDelay sets the delay amount if the echo and delay type reverberation is

used.

Return Value
None

See Also
SsUtSetReverbType()

SsUtAllKeyOff

Keys off all voices

Format
void SsUtAllKeyOff (

short mode

)

Arguments
mode Always 0

Comments
SsUtAllKeyOff compulsorily keys off all voices used by the sound service.

Return Value
None

See Also
SsUtKeyOn(), SsUtKeyOff(), SsSeqPlay()

3
Standard C Functions

abs

Calculates absolute value

Format
#include <stdlib.h>

long abs (

long i

)

Arguments
i Integer value

Comments
abs calculates the absolute value of the integer i. This function is primarily for searching

the absolute value of int type integers. However, as int type and long type have the same

meaning in R3000, on this system it is a function equivalent to labs described next.

Return Value
The absolute value of the argument is returned.

See Also
labs()

labs

Calculates absolute value

Format
#include <stdlib.h>

long labs (

long i

)

Arguments
i Integer value

Comments
labs calculates the absolute value of the integer i. On this system, it is a function

equivalent to abs described previously.

Return Value
The absolute value of the argument is returned.

See Also
abs()

atoi

Converts character strings to integers

Format
#include <stdlib.h>

long atoi (

const char *s

)

Arguments
s Character string

Comments
atoi is the same as (long)strtol(s,(char**)NULL). On this system it is a function

equivalent to atol, which follows on next page.

Return Value
The result of converting the input value s to an integer is returned.

See Also
atol(), strtol()

atol

Converts character strings to integers

Format
#include <stdlib.h>

long atol(

const char *s

)

Arguments
s Character string

Comments
atol is the same as (long)strtol(s,(char**)NULL).

Return Value
The result of converting the input value s to an integer is returned.

See Also
atoi(),strtol()

bzero

Pads memory blocks with zeros

Format
#include <memory.h>

void *bzero (

unsigned char *p,

int n

}

Arguments
p Pointer to write start position

n Write byte number

Comments
Writes n byte zeros from the address specified by p.

Return Value
Returns the pointer to the address where write starts.

See Also
bcopy(), bcmp()

bcopy

 Copies memory blocks

Format
#include <memory.h>

void bcopy(

char *src,

char *dest,

long n

)

Arguments
src Copy source

dest Copy destination

n Copy byte number

Comments
bcopy copies the first n byte of src to dest.

Return Value
None

See Also
memcpy()

bcmp

Compares memory blocks

Format
#include <memory.h>

long bcmp(

char *b1,

char *b2,

long n

)

Arguments
b1 Comparison source 1

b2 Comparison source 2

n Comparison byte number

Comments
bcmp compares the first n bytes of b1 and b2.

Return Value
The next value depending on the comparison result of b1 and b2 is returned.

Result Return Value

b1<b2 <0

b1=b2 =0

b1>b2 >0

See Also
memcmp()

bsearch

Carries out binary searches

Format
#include <stdlib.h>

void *bsearch (

const void *key,

const void *base,

size_t n,

size_t w,

long(*fcmp)(const void *, const void *)

)

Arguments
key Storage destination of retrieved value

base Storage destination of retrieved array

n Number of elements

w Size of 1 element

fcmp Comparison function

Comments
With fcmp as a comparison function, bsearch carries out a binary search of tables of n

items (size of item = w) starting from base, looking for items matching key.

Return Value
The address of the first item matching the retrieval key is returned. 0 is returned if there is

no matching item.

calloc

Allocates main memory

Format
#include <stdlib.h>

void *calloc (

size_t n,

size_t s

)

Arguments
n Number of articles

s Block size

Comments
calloc secures the n x s byte block from the heap memory.

Return Value
The pointer to the secured memory block is returned.

NULL is returned in the event of failure.

See Also
malloc(), realloc(), free()

malloc

Allocates main memory

Format
#include <stdlib.h>

void *malloc (

size_t s

)

Arguments
s Characters to be tested

Comments
malloc secures the s byte block from the heap memory.

Return Value
The pointer to the secured memory block is returned.

NULL is returned in the event of failure to secure.

* At the time of user program activation the heap memory is defined as follows.

Lowest address Module’s highest address + 4

Highest address Package memory • 64KB

See Also
calloc(), realloc(), free()

realloc

Reallocates heap memory

Format
#include <stdlib.h>

void *realloc (

void *block,

size_t s

)

Arguments
block Area to be reallocated

s Area size

Comments
realloc reduces or enlarges the block block that was previously secured to s byte. If block

is NULL, it has the same operation as malloc().

Return Value
The reallocated block address is returned. This address may be different from the original

address. NULL is returned in the event of failure to allocate. At this time the original

block cannot be opened.

See Also
calloc(), malloc(), free()

free

Opens allocated memory blocks

Format
#include <stdlib.h>

void free (

void*block

)

Arguments
block Area to be opened

Comments
free opens the memory block secured by calloc(), malloc() and realloc().

Return Value
None

See Also
calloc(), malloc(), realloc()

memchr

Searches for characters in memory blocks

Format
#include <memory.h>

void *memchr (

const void *s,

long c,

size_t n

)

Arguments
s Retrieved characters storage destination

c Retrieved characters

n Number of retrieved bytes

Comments
memchr locates the first appearance of the character c in the memory block of the n byte

starting from s.

Return Value
The pointer to the located character is returned. NULL is returned when c cannot be

discovered.

memcmp

Carries out memory block comparison

Format
#include <memory.h>

long memcmp (

const void *s1,

const void *s2,

size_t n

)

Arguments
s1 Comparison source 1

s2 Comparison source 2

n Comparison byte number

Comments
memcmp compares the first n bytes of s1 and s2.

Return Value
The following values are returned depending on the comparison result of s1 and s2.

Result Return Value

s1<s2 <0

s1=s2 =0

s1>s2 >0

See Also
bcmp()

memcpy

Copies memory blocks

Format
#include <memory.h>

void *memcpy (

void *dest,

const void *src,

size_t n

)

Arguments
dest Copy destination

src Copy source

n Copy byte number

Comments
memcpy copies the first n byte of src to dest.

Return Value
dest is returned.

See Also
bcopy()

memmove

Copies memory blocks

Format
#include <memory.h>

void *memmove (

void *dest,

const void *src,

size_t n

)

Arguments
dest Copy destination

src Copy source

n Copy byte number

Comments
memmove copies the first n byte of src to dest.

Accurate copying is performed even among duplicated objects.

Return Value
dest is returned.

memset

Writes specified characters to memory blocks

Format
#include <memory.h>

void *memset (

const void *s,

long c,

size_t n

)

Arguments
s Memory block

c Character

n Character number

Comments
memset writes c to the n byte memory block starting from s.

Return Value
s is returned.

qsort

Carries out quick sort

Format
#include <stdlib.h>

void qsort (

void *base,

size_t n,

size_t w,

long (*fcmp)(const void *, const void *)

)

Arguments
base Storage destination of array to be sorted

n Number of elements

w Size of 1 element

fcmp Comparison function

Comments
With fcmp as a comparison function, qsort sorts a table of n number of items (size of item

= w) starting from base.

Take care with the empty heap area because malloc() is called internally.

Return Value
None

srand

Initialises random number generator

Format
#include <stdlib.h>

void srand (

unsigned int seed

)

Arguments
seed Random number

Comments
srand sets the new starting point of the random number generation. Default is 1.

Return Value
None

See Also
rand()

rand

Generates random numbers

Format
#include <stdlib.h>

long rand (void)

Arguments
None

Comments
rand generates pseudo random numbers between RAND_MAX(0x7FFF=32767) from 0.

Return Value
A generated pseudo random number is returned.

See Also
srand()

strcat

Adds one character string to another

Format
#include <strings.h>

char *strcat (

char *dest,

const char *src

)

Arguments
dest Link destination character string

src Link source character string

Comments
strcat adds src to the end of the character string dest.

Return Value
dest is returned.

See Also
strncat()

strchr

Searches for position of first appearance of a specified
character in a character string

Format
#include <strings.h>

char *strchr (

const char *s,

long c

)

Arguments
s Retrieved character string

c Retrieved character

Comments
strchr searches for the position where the character c first appears in the character string s.

Return Value
The address of the appearance position of c is returned. NULL is returned if c does not

appear.

strcmp

Compares character strings

Format
#include <strings.h>

long strcmp (

const char *s1,

const char *s2

)

Arguments
s1 Comparison source 1

s2 Comparison source 2

Comments
strcmp compares each character of s1 and s2 as unsigned char.

Return Value
The following values are returned depending on the comparison result of s1 and s2.

Result Return Value

s1<s2 <0

s1=s2 =0

s1>s2 >0

strcpy

Copies one character string to another

Format
#include <strings.h>

char *strcpy (

char *dest,

const char *src

)

Arguments
dest Copy destination character string

src Copy source character string

Comments
strcpy copies src to the character string dest.

Return Value
dest is returned.

See Also
strncpy()

strcspn

Searches for first part of a character string comprising only
characters not included in specified character set

Format
#include <strings.h>

size_t strcspn (

const char *s1,

const char *s2

)

Arguments
s1 Character string

s2 Character group

Comments
strcspn returns the length of the first part of a character string comprising only characters

not included in the character string s2 within the character string s1.

Return Value
The length of the found section of the character string is returned.

strlen

Finds the number of characters in character string

Format
#include <strings.h>

long strlen (

const char *s

)

Arguments
s Character string

Comments
strlen counts number of characters in the character string s.

Return Value
The character number is returned.

strncat

Adds one character string to another

Format
#include <strings.h>

char *strncat (

char *dest,

const char *src,

size_t n

)

Arguments
dest Link destination array

src Link source character string

n Link character number

Comments
strncat adds the largest n character from src to end of character string dest.

Return Value
dest is returned.

strncmp

Compares character strings

Format
#include <strings.h>

long stncmp (

const char *s1,

const char *s2,

size_t n

)

Arguments
s1 Comparison source 1

s2 Comparison source 2

n Comparison character number

Comments
strncmp compares as unsigned char all characters as far as s1 and s2 top n characters.

Return Value
The following values are returned depending on the result of the comparison.

Result Return

s1<s2 <0

s1=s2 =0

s1>s2 >0

strncpy

Copies one character to another

Format
#include <strings.h>

char *strncpy (

char *dest,

const char *src,

size_t n

)

Arguments
dest Copy destination character string

src Copy source character string

n Copy byte number

Comments
strncpy copies n bytes of src to the character string dest. It stops copying when the number

of characters added reaches n.

Return Value
dest is returned.

strpbrk

Searches for position of first appearance of a specified
character in a character set

Format
#include <strings.h>

char *strpbrk (

const char *s1,

const char *s2

)

Arguments
s1 Retrieved character string

s2 Character group

Comments
strpbrk checks the character string s1 and searches the position where any one character

included in the character group s2 first appears.

Return Value
The address of the found character is returned. NULL is returned if it is not found.

strrchr

Searches for position of last appearance of a specified
character in a character string

Format
#include <strings.h>

char *strrchr (

const char *s,

long c

)

Arguments
s Retrieved character string

c Retrieved character

Comments
strrchr searches the position where the character c last appears in the character string s.

Return Value
The address of the appearance position of c is returned. NULL is returned if c does not

appear.

strspn

Searches for first part of a character string comprising only
characters in a specified character set

Format
#include <strings.h>

size_t strspn (

const char *s1,

const char *s2

)

Arguments
s1 Retrieved character string

s2 Character group

Comments
strspn returns the length of the first section that comprises only characters that are

included in the character group s2 within the character string s1.

Return Value
The length of the found section of the character string is returned.

strstr

Searches for position of appearance of specified partial
character string

Format
#include <strings.h>

char *strstr (

const char *s1,

const char *s2

)

Arguments
s1 Retrieved character string

s2 Retrieved character string

Comments
strstr checks the character string s1 and searches the position where the character string s2

first appears.

Return Value
The address of the position found is returned. NULL is returned if it is not found.

strtok

Searches for a character string bounded by characters in a
specified character set

Format
#include <strings.h>

char *strtok (

char *s1,

const char *s2

)

Arguments
s1 Retrieved character string

s2 Bounded character group

Comments
strtok takes the character string s1 as a set of tokens bounded by one or more characters

within the separate character string s2.

The first token top address of s1 is returned when strtok is first called, and directly after

the token, the character NULL is written. After the s1 address is stored in the function,

when NULL is entered in the first argument and strtok is called, a search is carried out

until the token in the character string s1 disappears.

Return Value
The top address of the tokens found in s1 is returned. NULL is returned if nothing is

found.

strtol

Converts character strings to integers

Format
#include <stdlib.h>

long strtol (

const char *s,

char **endp

)

Arguments
s Character string

endp Storage destination of pointer to non-convertible character

 string

Comments
strtol converts the character string s to long type (same as int type in R3000).

s must be in the following format.

[ws][sn][ddd]

[ws] White space (can be omitted)

[sn] Sign (can be omitted)

[ddd] Number string (can be omitted)

strtol stops conversion when a character is encountered that cannot be converted and,

unless endp is NULL, it sets the pointer to the character that stopped conversion to endp.

Return Value
The result of converting the input value s to an integer is returned. 0 is returned when an

error occurs.

See Also
strtoul()

strtoul

Converts character string into unsigned integer

Format
#include <stdlib.h>

unsigned long strtoul (

const char *s,

char **endp

)

Arguments
s Character string

endp Storage destination of pointer to non-convertible character

 string

Comments
strtoul converts the character string s to unsigned long type (same as unsigned int type in

R3000).

s must be in the following format.

[ws][sn][ddd]

[ws] White space (can be omitted)

[sn] Sign (can be omitted)

[ddd] Number string (can be omitted)

strtoul stops conversion when a character is encountered that cannot be converted and,

unless endp is NULL, it sets the pointer to the character that stopped conversion to endp.

Return Value
The result of converting the input value s to an integer is returned.

See Also
strtol()

isXXX

Carries out character testing

Format
#include <ctype.h>

long isXXX (

long c

)

Arguments
c Character

Comments
isXXX carries out testing of character c. They are all macros. The test conditions are as

follows.

Function Name Condition

isalnum isalpha(c) || isdigit(c)

isalpha isupper(c) || islower(c)

isascii ASCII characters

iscntrl Control characters

isdigit 10 base

isgraph Printable characters except spaces

islower Lower case characters

isprint Printable characters including spaces

ispunct Printable characters except spaces, English letters and numbers

isspace Spaces, page breaks, line feeds, character returns, tabs

isupper Upper case letters

isxdigit Hexadecimal

Return Value
A value other than 0 is returned if the input value c satisfies the conditions, and 0 is

returned if the conditions are not satisfied.

toascii

Masks 7th bit of an input value

Format
#include <ctype.h>

long toascii (

long c

)

Arguments
c Input value

Comments
toascii is a macro for masking the 7th bit.

Return Value
The value masking the 7th bit of the input value c is returned.

tolower

Converts characters to lower case characters

Format
#include <ctype.h>

long tolower (

long c

)

Arguments
c Input value

Comments
tolower is a macro for converting the input value c to a lower case character.

Return Value
The lower case character corresponding to the input value c.

toupper

Converts characters to upper case characters

Format
#include <ctype.h>

long toupper (

long c

)

Arguments
c Input value l

Comments
toupper is a macro for converting the input value c to an upper case character.

Return Value
The upper case character corresponding to the input value c.

getc

Gets a single character from the stream

Format
#include <stdio.h>

char getc (

FILE *stream

)

Arguments
stream Input stream

Comments
Gets a single character from input stream stream.

Return Value
NULL is returned in the case of file end or error.

See Also
getchar(), gets()

getchar

Gets a single character from the standard input stream

Format
#include <stdio.h>

char getchar(void)

Arguments
None

Comments
getchar gets a single character from the standard input stream. It is the same as getc

(stdin).

Return Value
Same as getc.

See Also
getc(), gets()

gets

Reads in a character string from the standard input stream

Format
#include <stdio.h>

char *gets (

char *s

)

Arguments
s Input array storage destination

Comments
gets reads in the array that ends with a line feed character from the standard input stream

(stdin) and stores it in s.

Return Value
The character string argument s is returned when successful. NULL is returned in the case

of file end or error.

See Also
getc(), getchar()

putc

Outputs a single character to the stream

Format
#include <stdio.h>

void putc (

long c,

FILE *stream

)

Arguments
c Output character

stream Output stream

Comments
putc outputs the character c to the output stream stream.

Return Value
None

See Also
putchar(), puts()

putchar

Outputs a single character to standard output stream

Format
#include <stdio.h>

long putchar(

char c,

)

Arguments
c Output character

Comments
putchar outputs a single character to the standard output stream. It is the same as putc

(stdout).

Return Value
None

See Also
putc(), puts()

puts

Outputs a character string to the standard output stream

Format
#include <stdio.h>

void puts (

const char *s

)

Arguments
s Output character string

Comments
puts outputs the character string closed by NULL to the standard output stream (stdout),

and finally outputs the line feed character.

Return Value
None

See Also
putc(), putchar()

printf

Carries out formatted output to standard output stdout

Format
#include <stdio.h>

long printf (

const char *fmt[,argument ...]

)

Arguments
fmt Input format character string

Comments
Please refer to C language reference books for a detailed explanation of input format.

Not compatible with conversion specifiers “f”, “e”, “E”, “g” and “G”.

printf2() of the mathematical function service is used in floating-point display.

Return Value
The length of the output character string is returned. NULL is returned when an error

occurs.

See Also
sprintf(), printf2()

sprintf

Format output to array

Format
#include <stdio.h>

long sprintf(

char *s,

const char *fmt[,argument...]

)

Arguments
s Storage destination of conversion character string

fmt Input format character string

Comments
Please refer to C language reference books for a detailed explanation of input format.

Not compatible with conversion specifiers “f”, “e”, “E”, “g” and “G”.

sprintf2() of the mathematical function service is used in floating-point display.

Return Value
The length of the output character string is returned. NULL is returned when an error

occurs.

See Also
printf(), sprintf2()

setjmp

Defines arrival point of non-local jump

Format
#include <setjmp.h>

int setjmp (

jmp_buf p

)

Arguments
p Environment evacuation variable

Comments
Stores non-local jump arrival point information in p. When longjmp(p,val) is executed, it

returns from setjmp().

Return Value
With direct calling 0 is returned.

When jump is carried out the value supplied to the second argument of longjmp() is

returned.

See Also
longjmp()

longjmp

Non-local jump

Format
#include <setjmp.h>

void longjmp (

jmp_buf p,

int val

)

Arguments
p Environment evacuation variable

val Return value of setjmp()

Comments
Jumps non-locally to arrival point specified by p.

Return Value
None. Not returned when executed normally.

See Also
setjmp()

4
Mathematical Functions

fabs

Absolute value (macro)

Format
fabs (

double x

)

Arguments
x Floating-point value

Comments
fabs looks for the absolute value.

Return Value
The absolute value of x

Notes
This is a macro

atof

Converts character strings to floating-point numbers

Format
double atof(

const char *s

)

Arguments
s Character string

Comments
atof converts character string to floating-point numbers (double type).

Return Value
The result of converting the input value s to double type is returned. If the correct value

exceeds the range that can be expressed, either +HUGE_VAL(1.797693134862316e+308)

or -HUGE_VAL is returned according to the sign. 0 is returned if an underflow occurs.

Notes
Error processing is as follows.

Condition Return Value Error

Outside the range that can
be expressed

+/- HUGE_VAL Domain error

Underflow occurrence 0 Domain error

See Also
strtod()

strtod

Converts character strings to floating-point numbers

Format
double strtod(

const char *s,

char **endp

)

Arguments
s Character string

endp Storage destination of pointer to non-convertible character

 string

Comments
strtod converts the character string s to double type.

s must be in the following format.

[ws][sn][ddd]

[ws] White space (can be omitted)

[sn] Sign (can be omitted)

[ddd] Number string (can be omitted)

strtod stops conversion when a character is encountered that cannot be converted and,

unless endp is NULL, it sets the pointer to the character that stopped conversion to endp.

Return Value
The result of converting the input value s to double type is returned. If the correct value

exceeds the range that can be expressed, either +HUGE_VAL(1.797693134862316e+308)

or -HUGE_VAL is returned, according to the sign. 0 is returned if an underflow occurs.

Notes
Error processing is as follows.

Condition Return Value Error

Outside the range that can
be expressed

+/- HUGE_VAL Domain error

Underflow occurrence 0 Domain error

pow

x to the power of y

Format
double pow (

double x,

double y

)

Arguments
x Number value

y Power

Comments
pow calculates x to the power of y.

Return Value
x to the power of y (xy)

Notes
Error processing is as follows.

Condition Return Value Error

x==0 && y>0 0

x==0 && y<=0 1 Domain error

x<0 && “y is not Integer value” 0 Domain error

See Also
exp()

exp

Exponent

Format
double exp (

double x

)

Arguments
x Floating-point value

Comments
exp looks for the exponent function of x.

Return Value
e to the power of x (ex)

See Also
pow(), log()

log

Natural logarithm

Format
double log (

double x

)

Arguments
x Logarithm calculated value

Comments
log looks for the logarithm function of x.

Return Value
x logarithm (ln(x))

Notes
x is greater than 0. Range error in the case of others.

Condition Return Value Error

x<0 0 Domain error

x==0 1 Range error

See Also
exp(), log10()

log10

Base 10 logarithm

Format
double log10 (

double x

)

Arguments
x Logarithm calculated value

Comments
log looks for the base 10 logarithm function of x.

Return Value
x base 10 logarithm (log10(x))

Notes
x is greater than 0. Range error in the case of others.

Condition Return Value Error

x<0 0 Domain error

x==0 1 Range error

See Also
log()

floor

Largest integer not greater than x (base function)

Structure
double floor (

double x

)

Arguments
x Floating-point value

Comments
floor looks for the largest integer (double type) that is not greater than x.

Return value
Largest integer (double type) that is not greater than x

See Also
ceil()

ceil

Smallest integer not smaller than x (ceiling function)

Structure
double ceil (

double x

)

Arguments
x Floating-point value

Comments
ceil looks for the smallest integer (double type) that is not smaller than x.

Return value
Smallest integer (double type) that is not smaller than x

See Also
floor()

fmod

x/y floating-point number remainder

Structure
double fmod (

double x,

double y

)

Arguments
x Floating-point value

y Floating-point value

Comments
fmod looks for the remainder of the floating-point number resulting from x/y.

Return value
Floating-point number remainder of x/y

Notes
Return value sign is the same as x. 0 is returned if y is 0.

modf

Separation into integer parts and fractional parts

Structure
double modf (

double x,

double *y

)

Arguments
x Floating-point value

y Pointer to the buffer for storing integer part

Comments
modf separates x into integer parts and fractional parts.

The integer part is stored in y‚ and the fractional part becomes the return value.

Return value
Fractional part of x

Notes
The sign for both integer parts and fractional parts is the same as x.

sin

Sine

Structure
double sin (

double x

)

Arguments
x Angle in radian units

Comments
sin looks for the sine function of x.

Return value
sine function of x (sin(x))

See Also
cos(), tan(), asin()

cos

Cosine

Structure
double cos (

double x

)

Arguments
x Angle in radian units

Comments
cos looks for the cosine function of x.

Return value
cosine function of x (cos(x))

See Also
sin(), tan(), acos()

tan

Tangent

Structure
double tan (

double x

)

Arguments
x Angle in radian units

Comments
tan looks for the tangent function of x.

Return value
tangent function of x (tan(x))

See Also
sin(), cos(), atan()

asin

Arcsine

Structure
double asin (

double x

)

Arguments
x Arcsine calculation value. Range is [-1 to 1].

Comments
asin looks for the arcsine function of x.

Return value
Arcsine function of x. The range is [-pi/2, pi/2].

Error processing is as follows.

Condition Return value Error

fabs(x)>1 0 Domain error

Notes
[] shows the closed area.

See Also
sin(), acos(), atan()

acos

Arccosine

Structure
double acos (

double x

)

Arguments
x Arccosine calculation value. Range is [-1 to 1].

Comments
acos looks for the arccosine function of x

Return value
Arccosine function of x. The range is [0 to pi].

Error processing is as follows.

Condition Return value Error

fabs(x)>1 0 Domain error

Notes
[] shows the closed area.

See Also
cos(), asin(), atan()

atan

Arctangent

Structure
double atan (

double x

)

Arguments
x Arctangent calculation value

Comments
atan looks for the arctangent function of x.

Return value
Arctangent function of x. The range is [-pi/2 to pi/2]

Notes
[] shows the closed area.

See Also
tan(), asin(), acos(), atan2()

atan2

Arctangent

Structure
double atan2 (

double x,

double y

)

Arguments
x Floating-point value

y Floating-point value

Comments
atan2 looks for the arctangent function of x/y.

Return value
Arctangent function of x/y. The range is [-pi to pi].

Error processing is as follows.

Condition Return value Error

x==0 && y==0 0 Domain error

Notes
[] shows the closed area.

See Also
atan()

sinh

Hyperbolic sine

Structure
double sinh (

double x

)

Arguments
x Angle in radian units

Comments
sinh looks for the hyperbolic sine function of x.

Return value
Hyperbolic sine function of x (sinh(x))

See Also
cosh(), tanh()

cosh

Hyperbolic cosine

Structure
double cosh (

double x

)

Arguments
x Angle in radian units

Comments
cosh looks for the hyperbolic cosine function of x.

Return value
hyperbolic cosine function of x (cosh(x))

See Also
sinh(), tanh()

tanh

Hyperbolic tangent

Structure
double tanh (

double x

)

Arguments
x Angle in radian units

Comments
tanh looks for the hyperbolic tangent function of x.

Return value
Hyperbolic tangent function of x (tanh(x))

See Also
sinh(), cosh()

sqrt

Square root

Structure
double sqrt (

double x

)

Arguments
x Floating-point value that is not negative

Comments
sqrt looks for the square root of x

Return value
Square root of x

Error processing is as follows.

Condition Return value Error

x<0 0 Domain error

hypot

Complex number absolute value

Structure
double hypot (

double x,

double y

)

Arguments
x Floating-point value

y Floating-point value

Comments
hypot looks for the absolute value of the complex number (x+iy).

Return value

Square root of the sum of x 2 and y2

ldexp

Calculates real number from mantissa and exponent (x n×× 2)

Structure
double ldexp (

double x,

long n

)

Arguments
x Floating-point value

n Integer exponent

Comments
ldexp calculates the real number from the mantissa and exponent.

Return value

The value of x n× 2

frexp

Resolution into normalised fractional part and 2n part

Structure
double frexp (

double x,

int *n

)

Arguments
x Floating-point value

n Pointer to the buffer that stores the 2n part

Comments

frexp resolves x into fractional parts normalised to [1/2,1) and 2n parts. The fractional

part becomes the return value and the 2n part is stored in n.

Return value
Normalised fractional part [1/2, 1)

Notes
[] shows the closing section and () the opening section.

printf2

Formatted output of standard output stdout (supports float and double
type)

Structure
long printf2(

const char *fmt, [argument...]

)

Arguments
fmt Output format character string

Comments
The conversion specifiers “f”, “e”, “E”, “g” and “G” can be used.

The stack consumption amount is greater than printf.

Return value
The length of the output character string is returned.

See Also
sprintf2()

sprintf2

Formatted output to array (supports float and double type)

Structure
long sprintf2(

char *s,

const char *fmt, [argument...]

)

Arguments
s Storage destination of converted character string

fmt Output format character string

Comments
The conversion specifiers “f”, “e”, “E”, “g” and “G” can be used.

The stack consumption amount is greater than printf.

Return value
The length of the output character string is returned.

See Also
printf2()

5
Other Functions

EXEC

Executable file data structure

Structure
struct EXEC {

unsigned long pc0;

unsigned long gp0;

unsigned long t_addr;

unsigned long t_size;

unsigned long d_addr;

unsigned long d_size;

unsigned long s_addr;

unsigned long s_size;

unsigned long sp, fp, gp, base;

};

Members
pc0 Execution start address

gp0 gp register initial value

t_addr Data session top address with text session + initial value

t_size Data session size with text session + initial value

d_addr Reserved for the system

d_size Reserved for the system

b_addr Data session top address without initial value

b_size Data session size without initial value

s_addr Stack area top address (for user specification)

s_size Stack area size (for user specification)

sp,fp,gp,base Register evacuation area

Comments
EXEC is arranged in the top 2k bytes of the executable file (PS-X EXE structure). It holds

information for loading and executing the program that is stored in the file.

It activates the program by adding stack information and delivering it to the Exec()

function.

See Also
Exec()

DIRENTRY

Directory entry data structure

Structure
struct DIRENTRY {

char name[20];

long attr;

long size;

struct DIRENTRY *next

long head;

char system[8];

}

Members
name Filename

attr Attribute (depends on file system)

size File size (byte units)

next Next file entry (for user)

head Head sector

system Reserved for the system

Comments
DIRENTRY stores information relating to files that are registered in the file system.

See Also
firstfile(), nextfile()

CdlLOC

CD-ROM location

Structure
typedef struct {

u_char minute;

u_char second;

u_char sector;

u_char track;

} CdlLOC;

Members
minute Minute

second Second

sector Sector

track Track number

Comments
CD location specification structure.

Notes
track members are not currently used.

CdlFILE

ISO-9660 file descriptor

Structure
typedef struct {

CdlLOC pos;

u_long size;

char name[16];

} CdlFILE;

Members
pos File position

size File size

name Filename

Comments
CdIFILE gets the ISO-9660 CD-ROM file location and size.

GetRCnt

Getting root counter

Structure
long GetRCnt (

unsigned long spec

)

Arguments
spec Root counter specification

Comments
GetRCnt returns the current value of the root counter spec.

Return value
The counter value that is expanded without the sign in 32bit is returned when successful,

and -1 is returned in the event of failure.

See Also
StartRCnt(), ResetRCnt()

ResetRCnt

Resetting root counter

Structure
long ResetRCnt(

unsigned long spec

)

Arguments
spec Root counter specification

Comments
ResetRCnt resets the root counter spec.

Return value
1 is returned when successful, and 0 in the event of failure.

See Also
GetRCnt(), StartRCnt()

StartRCnt

Root counter activation

Structure
long StartRCnt (

unsigned long spec

)

Arguments
spec Root counter specification

Comments
StartRCnt activates the root counter spec.

Return value
1 is returned when successful, and 0 in the event of failure.

See Also
GetRCnt(), ResetRCnt()

Enter/ExitCriticalSection

Interruption inhibited/permitted

Structure
void EnterCriticalSection(void)

void ExitCriticalSection(void)

Arguments
None

Comments
EnterCriticalSection() inhibits interruption

ExitCriticalSection() permits interruption.

Return value
None

open

Opening file

Structure
int open (

char *devname,

int flag

)

Arguments
devname Filename

flag Open mode

Comments
open opens the file devname and returns its descriptor.

Macros that can be specified in flag are as follows.

Macro Open mode

O_RDONLY Read only

O_WRONLY Write only

O_RDWR Read and write

O_CREAT Create file

O_NOBUF No buffer mode

O_NOWAIT No synchronisation mode

Return value
The file descriptor is returned when successful, and -1 in the event of failure.

See Also
close()

close

Closing file

Structure
int close (

int fd

)

Arguments
fd File descriptor

Comments
close releases the file descriptor.

Return value
fd is returned when successful, and -1 in all other cases.

See Also
open()

lseek

Moving file pointer

Structure
int lseek (

int fd,

unsigned int offset,

int flag

)

Arguments
fd File descriptor

offset Offset

flag Refer to the comments

Comments
lseek moves the file pointer of the device showing the descriptor specified by fd.

offset is the movement byte number. The movement start point changes according to the

value of flag.

It cannot be applied to character type drivers.

Macros that can be specified in flag are as follows.

Flag Macro function

SEEK_SET Top of file

SEEK_CUR Current location

Return value
The current file pointer is returned when successful, and -1 in all other cases.

See Also
open(), read(), write()

read

Reads data from file

Structure
int read (

int fd,

char *buf,

int n

)

Arguments
fd File descriptor

buf Read buffer address

n Read byte number

Comments
read reads n bytes from the descriptor specified by fd to the buf specified area.

Return value
The byte number read in the area at the time of normal termination is returned, and -1 in

all other cases.

See Also
open()

write

Writes data to file

Structure
int write (

int fd,

char *buf,

int n

)

Arguments
fd File descriptor

buf Write data address

n Write byte number

Comments
write writes n bytes from the descriptor specified by fd to the buf specified area.

Return value
The byte number written in the area at the time of normal termination is returned, and -1

in all other cases.

See Also
open()

firstfile

First file retrieval

Structure
struct DIRENTRY *firstfile (

char *name,

struct DIRENTRY *dir

)

Arguments
name Filename

dir Buffer that stores information relating to retrievable files

Comments
firstfile retrieves files corresponding to the filename pattern name, and stores information

relating to them in dir.

Return value
dir is returned when successful, and 0 in all other cases.

Notes
(one optional character) * (entire character string of optional length) can be used as a

wildcard character in the filename pattern. The character specification after * is

disregarded.

See Also
DIRENTRY structure, nextfile()

nextfile

Next file retrieval

Structure
struct DIRENTRY *nexttfile (

struct DIRENTRY *dir

)

Arguments
dir Buffer that stores information relating to retrievable files

Comments
nextfile continuously carries out retrieval in the same way as the firstfile() function

executed directly before. When relevant files are found, information relating to them is

stored in dir.

Return value
dir is returned when successful, and 0 in all other cases.

Notes
Execution will be unsuccessful if the CD-ROM drive shell cover is opened after firstfile(),

and there will be a report that the file cannot be found.

See Also
DIRENTRY structure, firstfile()

delete

Deletes files

Structure
int delete (

char *name

)

Arguments
name Filename

Comments
delete deletes the file name.

Return value
1 is returned when successful, and 0 in all other cases.

format

Initialises file system

Structure
int format (

char *fs

)

Arguments
fs File system name

Comments
format initialises the file system fs.

Return value
1 is returned when successful, and 0 in all other cases.

Notes
Valid only for file systems that can be written.

rename

Renaming files

Structure
int rename (

char *src,

char *dest

)

Arguments
src Source filename

dest New filename

Comments
rename changes the filename from src to dest. It specifies the full path from the device

name to both src and dest.

Return value
1 is returned when successful, and 0 in all other cases.

Notes
Valid only for file systems that can be written.

LoadTest

Load test execution

Structure
long LoadTest (

char *name,

struct EXEC *exec

)

Arguments
name Filename

exec Executable file information

Comments
LoadTest writes the information contained in the PS-EXE format file name to exec.

Return value
The execution start address is returned when successful, and 0 if unsuccessful.

See Also
EXEC structure, Load()

Load

Loading executable file

Structure
long Load (

char *name,

struct EXEC *exec

)

Arguments
name Filename

exec Executable file information

Comments
Load reads the PS-EXE format file name in the address specified by its internal header,

and writes the internal information to exec.

Return value
1 is returned when successful, and 0 if unsuccessful.

See Also
EXEC structure, Exec()

Exec

Executing executable files

Structure
long Exec (

struct EXEC *exec,

long argc,

char *argv

)

Arguments
exec Executable file information

argc Argument number

argv Argument

Comments
Exec executes the module loaded on the memory in accordance with the executable file

information specified by exec.

Neither the stack nor the frame buffer are set if exec->s_addr is 0.

The contents of the operation are as follows.

(1) Data session is zero cleared without an initial value.

(2) sp, fp and gp are initialised after evacuation (the value of fp is equal to

that of sp)

(3) The argument of main() is set (by the a0 and a1 registers)

(4) The execution start address is called.

(5) sp, fp and gp are returned after return.

Return value
1 is returned when successful, and 0 in the event of failure.

Notes
Must be executed by critical section.

See Also
EXEC structure, Load()

InitHeap

Initialisation of heap area

Structure
void InitHeap (

void *head,

long size

)

Arguments
head Heap head address

size Heap size (multiples of 4 byte units)

Comments
InitHeap initialises the group of memory control functions. Thereafter, malloc(), etc. can

be used. Not all the size bytes can be used because of the presence of overhead.

Return value
None

Notes
Do not carry out multiple execution.

See Also
malloc()

FlushCache

Flushing I cache

Structure
void FlushCache (void)

Arguments
None

Comments
FlushCache flushes the I cache.

It is executed when the program code is written in the memory.

Return value
None

Notes
Memory content cannot be changed.

_get_errno

Gets adjacent input/output error code

Structure
long _get_errno (void)

Arguments
None

Comments
_get_errno gets adjacent error code through all file descriptors.

The error code is defined in sys/errno.h.

Return value
Error code

GetPadBuf

Gets controller buffers

Structure
void GetPadBuf (

volatile unsigned char **buf1,

volatile unsigned char **buf2

)

Arguments
buf1 Pointer to the buffer that stores data from the port 1 controller.

buf2 Pointer to the buffer that stores data from the port 2 controller.

Comments

Communication with the controller is carried out every vertical synchronisation

interruption, and the result stored in controller buffers within the system. The GetPadBuf

function can get the pointers to those buffers.

Two sets of controller buffers are available for the ports, and the following data is stored.

Bytes Content

0 0xff: Without controller

0x00: With controller

1 Upper 4bit: Terminal type

Lower 4bit: Received data size (1/2 byte number)

2~ Reception data (largest 32 bytes)

The received data is different according to the controller type shown by ‘terminal type’.

The terminal types supported by this library are as follows.

Terminal Classification Device Name

0x1 Mouse

0x2 NeGCon

0x4 Standard controller

0x5 Joystick

Please refer to the "Programmer's Guide" for the contents of received data corresponding

to terminal type.

Return value
None

CdPlay

Plays back CD-DA tracks

Structure
int CdPlay (

int mode,

int *tracks,

int offset

)

Arguments
mode Mode

tracks Array that specifies track to be played. Ends with 0.

offset index of tracks starting the performance

Comments
CdPlay plays consecutively in the background multiple tracks specified by the array

tracks. When the last track of the array is played, it repeats or ends the performance,

according to the mode.

Values that can be specified in mode are as follows.

Value Description

0 Stops performance

1 The tracks specified by tracks are played consecutively, and the performance is stopped
when all the specified tracks have been played.

2 The tracks specified by tracks are played consecutively, and the performance is returned
to the start and repeated when all the specified tracks have been played.

3 The index of the tracks array for the track currently being played is returned.

Return value
The track currently being played. The index of the tracks array is returned instead of the

track number. The performance is shown as ended if -1 is returned.

Notes
The performance is carried out in track units, Performance and stopping etc. in mid track

is not possible.

CdReadFile

Reads files on CD-ROM

Structure
int CdReadFile(

char *file,

u_long *addr,

int nbyte

)

Arguments
file Filename

addr Read memory address

nbyte Read size

Comments
CdReadFile reads nbyte of a file on CD-ROM.

The entire file is read if 0 is specified in nbyte.

If NULL is specified in file, reading starts from the last location read by CdReadFile

immediately before.

Return value
The data number (bytes) read is returned if successful, and 0 is returned in the case of a

reading error.

Notes
The filename must be an absolute path.

Lower case characters are automatically changed to upper case characters.

Reading is carried out in the background, and CdReadSync() is used to determine the end

of reading.

CdReadExec

Loading executable files from CD-ROM

Structure
struct EXEC *CdReadExec(

char *file

)

Arguments
file Executable filename

Comments
Executable files specified by file are loaded by CdReadExec from CD-ROM to the

appropriate address in the main memory.

Reading is carried out in the background, and CdReadSync() is used to determine the end

of reading.

The loaded file is executed as a child process by using Exec().

Return value
EXEC structure that holds executable files that have been read.

Notes
The load address of the executable file should not overlap the area used by the parent

process

CdReadSync

Waits for termination of CdRead

Structure
int CdReadSync (

int mode,

u_char *result

)

Arguments
mode 0: Waits for termination of read

 1: Current condition is checked and immediately returned

result Status of most recently terminated command

Comments
CdReadSync waits for reading by CdReadFile() and CdReadExec() to terminate.

Return value
The following values are returned.

Return value Content

Standard integer Remaining sector number

0 Termination

-1 Read error

CdSearchFile

Gets location and size from filename on CD-ROM

Structure
CdlFILE *CdSearchFile (

CdlFILE *fp,

char *name

)

Arguments
fp CD-ROM file structure pointer

name Filename

Comments
CdSearchFile recognises the absolute location (minute, second, sector) and size from the

filename on CD-ROM.

The result is stored in fp.

Return value
The pointer of the CD-ROM file structure obtained is returned.

0 is returned if the file is not found, and -1 is returned if the search fails.

Notes
The filename must be an absolute path.

File location information in the same directory as files specified by fp are cached in

memory. For this reason, if CdSearchFile() is carried out continuously in files within the

same directory, access becomes faster from the second time.

Cases where the return value is -1 show that the directory read has failed for some reason.

GetVideoMode()

Obtains the present video signalling system

Structure
long GetVideoMode (void)

Arguments
None

Comments
Returns the present video signaling system declared in SetVideoMode().

Return value
Return value contents is the video signaling system mode

MODE_NTSC: NTSC system video signaling system
MODE_PAL: PAL system video signaling system

Notes
When SetVideoMode () is not called, no matter what the machine, it will return
MODE_NTSC.

See Also
SetVideoMode()

SetVideoMode()

Declares current video signalling system

Structure
long SetVideoMode (

long mode

)

Arguments
mode Video signaling system mode

Comments
Declares the video signaling system indicated by mode to the libraries.

Related libraries will be able to conform to the actions of the declared video signaling

system environment.

Return value
Previously-set video signaling system mode

Mode Contents

MODE_NTSC: NTSC system video signaling system

MODE_PAL: PAL system video signaling system

Notes
Gets called in advance of all library functions.

See Also
GetVideoMode()

TestCard

Memory card test

Structure
long TestCard (

long chan

)

Arguments
chan Slot numbers

 0: Slot 1

 1: Slot 2

Comments
TestCard tests the memory card set in the slot specified by chan and returns the result.

Card initialisation is carried out on the memory card control screen of the PlayStation.

One to four vertical synchronisation interruptions at the end of the operation are necessary

(17m to 68m seconds).

Return value
0: No card

1: Card present

2: New card detected

3: Communication or card abnormality detected

4: Non-initialised card detected

6
Index

All structures, functions and external variables explained in this Library Reference are listed in alphabetical
order together with the relavent page number.

_get_errno....................... 314

abs 201
acos................................. 274
ApplyMatrix...................... 77
ApplyMatrixLV................. 79
ApplyMatrixSV................. 78
asin 273
atan................................. 275
atan2 276
atof.................................. 257
atoi.................................. 203
atol.................................. 204

bcmp............................... 207
bcopy 206
bsearch............................ 209
bzero............................... 205

calloc 210
CdlFILE.......................... 291
CdlLOC.......................... 290
CdPlay............................ 317
CdReadExec.................... 321
CdReadFile..................... 319
CdSearchFile................... 323
ceil.................................. 267
ClearImage........................ 55
close................................ 298
CompMatrix...................... 94

cos...................................271
cosh.................................278
CVECTOR........................15

delete305
DIRENTRY.....................289
DISPENV..........................11
DRAWENV.........................9
DrawSync..........................59

EnterCriticalSection........295
Exec................................310
EXEC..............................287
ExitCriticalSection..........295
exp263

fabs256
firstfile303
floor266
FlushCache......................313
fmod................................268
FntFlush............................66
FntLoad.............................62
FntOpen63
FntPrint.............................65
format..............................306
free..................................213
frexp................................283

getc245
getchar246

GetClut..............................58
GetPadBuf.......................315
GetRCnt292
gets..................................247
GetTPage...........................56
GetVideoMode()..............325
GsBG36
GsBOXF............................45
GsCELL............................39
GsClearOt132
GsCOORDINATE2............23
GsDefDispBuff................103
GsDOBJ2..........................20
GsDrawOt.......................133
GsF_LIGHT.......................28
GsFOGPARAM.................29
GsGetActiveBuff.............107
GsGetLs..........................125
GsGetLw.........................124
GsGetLws........................127
GsGetTimInfo..................113
GsGetWorkBase..............137
GsGLINE...........................43
GsIMAGE.........................30
GsIncFrame.....................152
GsInit3D..........................102
GsInitCoordinate2............123
GsInitFixBg16.................142
GsInitGraph.....................100
GsLINE.............................41
GsLinkObject4................115
GsMAP.............................38
GsMapModelingData.......114
GsOT.................................17
GsOT_TAG.......................19
GsRVIEW2........................26
GsScaleScreen.................128
GsSetAmbient122
GsSetClip........................112
GsSetClip2D150
GsSetDrawBuffClip.........111
GsSetDrawBuffOffset......108

GsSetFlatLight................ 119
GsSetFogParam............... 121
GsSetLightMatrix............ 131
GsSetLightMode............. 120
GsSetLsMatrix................ 130
GsSetOffset..................... 109
GsSetOrign 151
GsSetProjection............... 118
GsSetRefView2............... 116
GsSetView2.................... 117
GsSetWorkBase.............. 136
GsSortBoxFill................. 148
GsSortClear..................... 138
GsSortFastSprite............. 140
GsSortFixBg16................ 144
GsSortGLine................... 147
GsSortLine...................... 146
GsSortObject4................. 134
GsSortOt......................... 149
GsSortSprite.................... 139
GsSPRITE......................... 32
GsSwapDispBuff............. 105
GsVIEW2.......................... 25
gteMIMefunc..................... 98

hypot............................... 281

InitHeap.......................... 312
isXXX............................. 240

KanjiFntClose................... 69
KanjiFntFlush................... 71
KanjiFntOpen.................... 67
KanjiFntPrint 70
Krom2Tim........................ 72
Krom2Tim2....................... 74

labs 202
ldexp............................... 282

Load................................309
LoadImage.........................51
LoadTest308
log...................................264
log10...............................265
longjmp...........................254
lseek................................299

malloc211
MATRIX...........................16
memchr...........................214
memcmp..........................215
memcpy...........................216
memmove........................217
memset............................218
modf................................269
MulMatrix0.......................76

nextfile............................304

open296

PopMatrix97
pow.................................261
printf251
printf2284
PushMatrix........................96
putc.................................248
putchar249
PutDispEnv.......................50
PutDrawEnv......................49
puts250

qsort................................219

rand.................................221
read301
realloc212
RECT..................................8
rename.............................307
ResetGraph........................47
ResetRCnt293
RotMatrix..........................80
RotMatrixX.......................82
RotMatrixY.......................84
RotMatrixZ........................86

ScaleMatrix.......................89
ScaleMatrixL.....................91
SetDispMask.....................48
setjmp..............................253
SetVideoMode()..............326
sin270
sinh277
SndVolume......................156
sprintf..............................252
sprintf2............................285
sqrt280
srand220
SsGetMute.......................174
SsGetMVol......................172
SsGetSerialAttr................180
SsGetSerialVol................182
SsIsEos............................177
SsPlayBack......................175
SsSeqClose......................161
SsSeqGetVol...................167
SsSeqOpen......................160
SsSeqPause......................163
SsSeqPlay........................162
SsSeqReplay....................164
SsSeqSetAccelerando.......170
SsSeqSetNext..................168
SsSeqSetRitardando.........169
SsSeqSetVol....................166
SsSeqStop........................165
SsSetMute.......................173
SsSetMVol......................171
SsSetSerialAttr................178

SsSetSerialVol................ 181
SsSetTempo.................... 176
SsUtAllKeyOff................ 199
SsUtChangePitch............. 187
SsUtGetReverbType........ 195
SsUtGetVVol.................. 190
SsUtKeyOff..................... 185
SsUtKeyOn..................... 183
SsUtPitchBend................ 186
SsUtReverbOff................ 192
SsUtReverbOn................ 191
SsUtSetReverbDelay....... 198
SsUtSetReverbDepth....... 196
SsUtSetReverbFeedback.. 197
SsUtSetReverbType......... 193
SsUtSetVVol................... 189
SsVabClose..................... 159
SsVabTransfer................. 157
StartRCnt........................ 294
StoreImage.................. 52, 53
strcat 222
strchr............................... 223

strcmp224
strcpy225
strcspn.............................226
strlen...............................227
strncat228
strncmp229
strncpy.............................230
strpbrk.............................231
strrchr..............................232
strspn233
strstr................................234
strtod...............................259
strtok...............................235
strtol................................236
strtoul..............................238
SVECTOR........................14

tan...................................272
tanh.................................279

TestCard..........................327
toascii..............................242
tolower............................243
toupper244
TransMatrix.......................88
TransposeMatrix................93

VECTOR...........................13
VSync................................60
VSyncCallback..................61

write................................302

Library Reference
Software Development Tool

• This product is sold on a membership agreement basis to Members of Net
Yaroze, which is operated by Sony Computer Entertainment Inc.

• The symbol, 'PlayStation' and 'Net Yaroze' are trademarks of Sony
Computer Entertainment Inc.

• Company and product names recorded in/on this product are generally
trademarks of each company. Note that in/on this product the symbols '® 'and 'TM' are not used explicitly.

Published February 1997
©1997 Sony Computer Entertainment Inc. All Rights Reserved.

Written and produced by :
Sony Computer Entertainment Inc.
Akasaka Oji Building
8-1-22 Akasaka, Minato-ku, Tokyo, Japan 107
Enquiries to: Network Business Project
E-mail:ny-info@scei.co.jp
TEL:+81 (0) 3-3475-1711

Sony Computer Entertainment Europe
Waverley House
7-12 Noel Street
London W1V 4HH, England
Inquiries to: The Yaroze Team
E-mail: yaroze-info@scee.sony.co.uk
TEL:+44 (0) 171 447 1616 / +44 (0) 7000 YAROZE

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd Floor
Foster City, CA 94404, USA
Inquiries to: The Yaroze Team
E-mail: yaroze@interactive.sony.com
TEL:+1-415-655-3600

